
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

by Tom Fifield, Diane Fleming, Anne Gentle,
Lorin Hochstein, Jonathan Proulx, Everett Toews,

and Joe Topjian

OpenStack Operations Guide

www.it-ebooks.info

http://www.it-ebooks.info/

978-1-491-94695-4

[LSI]

OpenStack Operations Guide
by Tom Fifield, Diane Fleming, Anne Gentle, Lorin Hochstein, Jonathan Proulx, Everett Toews, and Joe
Topjian

Copyright © 2014 OpenStack Foundation. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corpo‐
rate/institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editors: Andy Oram and Brian Anderson
Production Editor: Kristen Brown
Copyeditor: John Pierce
Proofreader: Amanda Kersey

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2014: First Edition

Revision History for the First Edition
2014-04-21: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491946954 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. OpenStack Operations Guide, the image of a crested agouti, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con‐
tained herein.

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/errata.csp?isbn=9781491946954
http://www.it-ebooks.info/

Table of Contents

Preface. xi

Part I. Architecture

1. Example Architectures. 3
Example Architecture—Legacy Networking (nova) 3

Overview 4
Detailed Description 7
Optional Extensions 9

Example Architecture—OpenStack Networking 9
Overview 9
Detailed Description 11
Example Component Configuration 19

Parting Thoughts on Architectures 23

2. Provisioning and Deployment. 25
Automated Deployment 25

Disk Partitioning and RAID 26
Network Configuration 28

Automated Configuration 28
Remote Management 29
Parting Thoughts for Provisioning and Deploying OpenStack 29
Conclusion 30

3. Designing for Cloud Controllers and Cloud Management. 31
Hardware Considerations 32
Separation of Services 33
Database 34

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Message Queue 34
Conductor Services 35
Application Programming Interface (API) 35
Extensions 36
Scheduling 36
Images 37
Dashboard 37
Authentication and Authorization 37
Network Considerations 38

4. Compute Nodes. 39
Choosing a CPU 39
Choosing a Hypervisor 40
Instance Storage Solutions 41

Off Compute Node Storage—Shared File System 42
On Compute Node Storage—Shared File System 42
On Compute Node Storage—Nonshared File System 43
Issues with Live Migration 43
Choice of File System 44

Overcommitting 44
Logging 45
Networking 45
Conclusion 45

5. Scaling. 47
The Starting Point 47
Adding Cloud Controller Nodes 49
Segregating Your Cloud 50

Cells and Regions 51
Availability Zones and Host Aggregates 51

Scalable Hardware 53
Hardware Procurement 53
Capacity Planning 54
Burn-in Testing 54

6. Storage Decisions. 55
Ephemeral Storage 55
Persistent Storage 55

Object Storage 55
Block Storage 57

OpenStack Storage Concepts 57
Choosing Storage Backends 58

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Commodity Storage Backend Technologies 60
Conclusion 62

7. Network Design. 63
Management Network 63
Public Addressing Options 64
IP Address Planning 64
Network Topology 65

VLAN Configuration Within OpenStack VMs 67
Multi-NIC Provisioning 67
Multi-Host and Single-Host Networking 67

Services for Networking 68
NTP 68
DNS 68

Conclusion 68

Part II. Operations

8. Lay of the Land. 71
Using the OpenStack Dashboard for Administration 71
Command-Line Tools 71

Installing the Tools 72
Administrative Command-Line Tools 72
Getting Credentials 73
Inspecting API Calls 75
Servers and Services 76
Diagnose Your Compute Nodes 78

Network Inspection 79
Users and Projects 80
Running Instances 81
Summary 82

9. Managing Projects and Users. 83
Projects or Tenants? 83
Managing Projects 84

Adding Projects 84
Quotas 85

Set Image Quotas 86
Set Compute Service Quotas 86
Set Object Storage Quotas 89
Set Block Storage Quotas 90

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

User Management 92
Creating New Users 92
Associating Users with Projects 93

Customizing Authorization 94
Users Who Disrupt Other Users 97

Summary 97

10. User-Facing Operations. 99
Images 99

Adding Images 99
Sharing Images Between Projects 100
Deleting Images 100
Other CLI Options 101
The Image Service and the Database 101
Example Image Service Database Queries 101

Flavors 101
Private Flavors 103
How Do I Modify an Existing Flavor? 103

Security Groups 104
General Security Groups Configuration 104
End-User Configuration of Security Groups 104

Block Storage 106
Block Storage Creation Failures 108

Instances 108
Starting Instances 108
Instance Boot Failures 109
Using Instance-Specific Data 110

Associating Security Groups 112
Floating IPs 112
Attaching Block Storage 113
Taking Snapshots 114

Live Snapshots 115
Instances in the Database 116
Good Luck! 117

11. Maintenance, Failures, and Debugging. 119
Cloud Controller and Storage Proxy Failures and Maintenance 119

Planned Maintenance 119
Rebooting a Cloud Controller or Storage Proxy 119
After a Cloud Controller or Storage Proxy Reboots 120
Total Cloud Controller Failure 120

Compute Node Failures and Maintenance 121

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Planned Maintenance 121
After a Compute Node Reboots 121
Instances 122
Inspecting and Recovering Data from Failed Instances 122
Volumes 125
Total Compute Node Failure 125
/var/lib/nova/instances 126

Storage Node Failures and Maintenance 127
Rebooting a Storage Node 127
Shutting Down a Storage Node 127
Replacing a Swift Disk 127

Handling a Complete Failure 128
Configuration Management 129
Working with Hardware 129

Adding a Compute Node 130
Adding an Object Storage Node 130
Replacing Components 130

Databases 131
Database Connectivity 131
Performance and Optimizing 131

HDWMY 132
Hourly 132
Daily 132
Weekly 132
Monthly 132
Quarterly 132
Semiannually 133

Determining Which Component Is Broken 133
Tailing Logs 133
Running Daemons on the CLI 134

Uninstalling 135

12. Network Troubleshooting. 137
Using “ip a” to Check Interface States 137
Visualizing nova-network Traffic in the Cloud 138
Visualizing OpenStack Networking Service Traffic in the Cloud 139
Finding a Failure in the Path 145
tcpdump 146
iptables 147
Network Configuration in the Database for nova-network 148

Manually Deassociating a Floating IP 148
Debugging DHCP Issues with nova-network 149

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging DNS Issues 152
Troubleshooting Open vSwitch 153
Dealing with Network Namespaces 154
Summary 155

13. Logging and Monitoring. 157
Where Are the Logs? 157
Reading the Logs 158
Tracing Instance Requests 159
Adding Custom Logging Statements 160
RabbitMQ Web Management Interface or rabbitmqctl 161
Centrally Managing Logs 161

rsyslog Client Configuration 161
rsyslog Server Configuration 162

StackTach 163
Monitoring 163

Process Monitoring 164
Resource Alerting 165
Metering and Telemetry with Ceilometer 165
OpenStack-Specific Resources 166
Intelligent Alerting 167
Trending 168

Summary 169

14. Backup and Recovery. 171
What to Back Up 171
Database Backups 172
File System Backups 172

Compute 172
Image Catalog and Delivery 173
Identity 173
Block Storage 173
Object Storage 173

Recovering Backups 173
Summary 174

15. Customization. 175
Create an OpenStack Development Environment 175
Customizing Object Storage (Swift) Middleware 178
Customizing the OpenStack Compute (nova) Scheduler 184
Customizing the Dashboard (Horizon) 189

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion 189

16. Upstream OpenStack. 191
Getting Help 191
Reporting Bugs 192

Confirming and Prioritizing 193
Bug Fixing 194
After the Change Is Accepted 194

Join the OpenStack Community 194
How to Contribute to the Documentation 195
Security Information 195
Finding Additional Information 196

17. Advanced Configuration. 197
Differences Between Various Drivers 197
Implementing Periodic Tasks 198
Specific Configuration Topics 199

Security Configuration for Compute, Networking, and Storage 199
High Availability 199
Enabling IPv6 Support 199
Periodic Task Frequency for Compute 199
Geographical Considerations for Object Storage 200

18. Upgrades. 201
Pre-Upgrade Testing Environment 201
Preparing for a Rollback 202
Upgrades 203
How to Perform an Upgrade from Grizzly to Havana—Ubuntu 204

Impact on Users 204
Upgrade Considerations 204
Perform a Backup 204
Manage Repositories 204
Update Configuration Files 205
Upgrade Packages on the Controller Node 207
Stop Services, Update Database Schemas, and Restart Services on the

Controller Node 207
Upgrade Packages and Restart Services on the Compute Nodes 208
Upgrade Packages and Restart Services on the Block Storage Nodes 209

How to Perform an Upgrade from Grizzly to Havana—Red Hat Enterprise
Linux and Derivatives 210
Impact on Users 210
Upgrade Considerations 210

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

Perform a Backup 210
Manage Repositories 211
Update Configuration Files 211
Upgrade Packages on the Controller Node 213
Stop Services, Update Database Schemas, and Restart Services on the

Controller Node 214
Upgrade Packages and Restart Services on the Compute Nodes 215
Upgrade Packages and Restart Services on the Block Storage Nodes 215

Cleaning Up and Final Configuration File Updates 216
Rolling Back a Failed Upgrade 216

A. Use Cases. 221

B. Tales From the Cryp^H^H^H^H Cloud. 225

C. Working with Roadmaps. 237

D. Icehouse Preview. 245

E. Resources. 255

Glossary. 257

Index. 289

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

OpenStack is an open source platform that lets you build an Infrastructure as a Ser‐
vice (IaaS) cloud that runs on commodity hardware.

Introduction to OpenStack
OpenStack believes in open source, open design, open development, all in an open
community that encourages participation by anyone. The long-term vision for Open‐
Stack is to produce a ubiquitous open source cloud computing platform that meets
the needs of public and private cloud providers regardless of size. OpenStack services
control large pools of compute, storage, and networking resources throughout a data
center.

The technology behind OpenStack consists of a series of interrelated projects deliver‐
ing various components for a cloud infrastructure solution. Each service provides an
open API so that all of these resources can be managed through a dashboard that
gives administrators control while empowering users to provision resources through
a web interface, a command-line client, or software development kits that support the
API. Many OpenStack APIs are extensible, meaning you can keep compatibility with
a core set of calls while providing access to more resources and innovating through
API extensions. The OpenStack project is a global collaboration of developers and
cloud computing technologists. The project produces an open standard cloud com‐
puting platform for both public and private clouds. By focusing on ease of implemen‐
tation, massive scalability, a variety of rich features, and tremendous extensibility, the
project aims to deliver a practical and reliable cloud solution for all types of organiza‐
tions.

xi

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with OpenStack
As an open source project, one of the unique aspects of OpenStack is that it has many
different levels at which you can begin to engage with it—you don’t have to do every‐
thing yourself.

Using OpenStack
You could ask, “Do I even need to build a cloud?” If you want to start using a com‐
pute or storage service by just swiping your credit card, you can go to eNovance, HP,
Rackspace, or other organizations to start using their public OpenStack clouds. Using
their OpenStack cloud resources is similar to accessing the publically available Ama‐
zon Web Services Elastic Compute Cloud (EC2) or Simple Storage Solution (S3).

Plug and Play OpenStack
However, the enticing part of OpenStack might be to build your own private cloud,
and there are several ways to accomplish this goal. Perhaps the simplest of all is an
appliance-style solution. You purchase an appliance, unpack it, plug in the power and
the network, and watch it transform into an OpenStack cloud with minimal addition‐
al configuration. Few, if any, other open source cloud products have such turnkey op‐
tions. If a turnkey solution is interesting to you, take a look at Nebula One.

However, hardware choice is important for many applications, so if that applies to
you, consider that there are several software distributions available that you can run
on servers, storage, and network products of your choosing. Canonical (where Open‐
Stack replaced Eucalyptus as the default cloud option in 2011), Red Hat, and SUSE
offer enterprise OpenStack solutions and support. You may also want to take a look at
some of the specialized distributions, such as those from Rackspace, Piston, Swift‐
Stack, or Cloudscaling. Also, a hat tip to Apache CloudStack, which Citrix donated to
the Apache Foundation after its $200 million purchase of Cloud.com. While not cur‐
rently packaged in any distributions, like Eucalyptus, it is an example of an alternative
private cloud software developed in an open source–like manner.

Alternatively, if you want someone to help guide you through the decisions about the
underlying hardware or your applications, perhaps adding in a few features or inte‐
grating components along the way, consider contacting one of the system integrators
with OpenStack experience, such as Mirantis or Metacloud.

If your preference is to build your own OpenStack expertise internally, a good way to
kick-start that might be to attend or arrange a training session. The OpenStack Foun‐
dation recently launched a Training Marketplace where you can look for nearby
events. Also, the OpenStack community is working to produce open source training
materials.

xii | Preface

www.it-ebooks.info

http://opsgui.de/NPH6JZ
http://opsgui.de/1eLCyio
http://www.it-ebooks.info/

Roll Your Own OpenStack
However, this guide has a different audience—those seeking to derive the most flexi‐
bility from the OpenStack framework by conducting do-it-yourself solutions.

OpenStack is designed for scalability, so you can easily add new compute, network,
and storage resources to grow your cloud over time. In addition to several massive
OpenStack public clouds, a considerable number of organizations (such as Paypal, In‐
tel, and Comcast) have built large-scale private clouds. OpenStack offers much more
than a typical software package because it lets you integrate a number of different
technologies to construct a cloud. This approach provides great flexibility, but the
number of options might be bewildering at first.

Who This Book Is For
This book is for those of you starting to run OpenStack clouds as well as those of you
who were handed an operational one and want to keep it running well. Perhaps
you’re on a DevOps team, perhaps you are a system administrator starting to dabble
in the cloud, or maybe you want to get on the OpenStack cloud team at your compa‐
ny. This book is for all of you.

This guide assumes that you are familiar with a Linux distribution that supports
OpenStack, SQL databases, and virtualization. You must be comfortable administer‐
ing and configuring multiple Linux machines for networking. You must install and
maintain a MySQL database and occasionally run SQL queries against it.

One of the most complex aspects of an OpenStack cloud is the networking configura‐
tion. You should be familiar with concepts such as DHCP, Linux bridges, VLANs, and
iptables. You must also have access to a network hardware expert who can configure
the switches and routers required in your OpenStack cloud.

Cloud computing is a quite advanced topic, and this book requires
a lot of background knowledge. However, if you are fairly new to
cloud computing, we recommend that you make use of the Glossa‐
ry at the back of the book, as well as the online documentation for
OpenStack and additional resources mentioned in this book in Ap‐
pendix E.

Further Reading
There are other books on the OpenStack documentation website that can help you
get the job done.

Preface | xiii

www.it-ebooks.info

http://docs.openstack.org
http://www.it-ebooks.info/

OpenStack Installation Guides
Describes a manual installation process, as in, by hand, without automation, for
multiple distributions based on a packaging system:

• Installation Guide for Debian 7.0
• Installation Guide for openSUSE and SUSE Linux Enterprise Server
• Installation Guide for Red Hat Enterprise Linux, CentOS, and Fedora
• Installation Guide for Ubuntu 12.04 (LTS) Server

OpenStack Configuration Reference
Contains a reference listing of all configuration options for core and integrated
OpenStack services by release version

OpenStack Cloud Administrator Guide
Contains how-to information for managing an OpenStack cloud as needed for
your use cases, such as storage, computing, or software-defined-networking

OpenStack High Availability Guide
Describes potential strategies for making your OpenStack services and related
controllers and data stores highly available

OpenStack Security Guide
Provides best practices and conceptual information about securing an OpenStack
cloud

Virtual Machine Image Guide
Shows you how to obtain, create, and modify virtual machine images that are
compatible with OpenStack

OpenStack End User Guide
Shows OpenStack end users how to create and manage resources in an Open‐
Stack cloud with the OpenStack dashboard and OpenStack client commands

OpenStack Admin User Guide
Shows OpenStack administrators how to create and manage resources in an
OpenStack cloud with the OpenStack dashboard and OpenStack client
commands

OpenStack API Quick Start
A brief overview of how to send REST API requests to endpoints for OpenStack
services

xiv | Preface

www.it-ebooks.info

http://opsgui.de/1eLBGtX
http://opsgui.de/1eLBI50
http://opsgui.de/NPGvrs
http://opsgui.de/NPGunp
http://opsgui.de/1eLCDTf
http://opsgui.de/1eLBL0N
http://opsgui.de/1eLCEGD
http://opsgui.de/NPG4NW
http://opsgui.de/1eLCHlR
http://opsgui.de/NPHaJI
http://opsgui.de/1eLBkDJ
http://opsgui.de/NPHdVO
http://www.it-ebooks.info/

How This Book Is Organized
This book is organized in two parts: the architecture decisions for designing Open‐
Stack clouds and the repeated operations for running OpenStack clouds.

Part I:

Chapter 1
Because of all the decisions the other chapters discuss, this chapter describes the
decisions made for this particular book and much of the justification for the ex‐
ample architecture.

Chapter 2
While this book doesn’t describe installation, we do recommend automation for
deployment and configuration, discussed in this chapter.

Chapter 3
The cloud controller is an invention for the sake of consolidating and describing
which services run on which nodes. This chapter discusses hardware and net‐
work considerations as well as how to design the cloud controller for perfor‐
mance and separation of services.

Chapter 4
This chapter describes the compute nodes, which are dedicated to running virtu‐
al machines. Some hardware choices come into play here, as well as logging and
networking descriptions.

Chapter 5
This chapter discusses the growth of your cloud resources through scaling and
segregation considerations.

Chapter 6
As with other architecture decisions, storage concepts within OpenStack take a
lot of consideration, and this chapter lays out the choices for you.

Chapter 7
Your OpenStack cloud networking needs to fit into your existing networks while
also enabling the best design for your users and administrators, and this chapter
gives you in-depth information about networking decisions.

Part II:

Chapter 8
This chapter is written to let you get your hands wrapped around your Open‐
Stack cloud through command-line tools and understanding what is already set
up in your cloud.

Preface | xv

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9
This chapter walks through user-enabling processes that all admins must face to
manage users, give them quotas to parcel out resources, and so on.

Chapter 10
This chapter shows you how to use OpenStack cloud resources and train your
users as well.

Chapter 11
This chapter goes into the common failures that the authors have seen while run‐
ning clouds in production, including troubleshooting.

Chapter 12
Because network troubleshooting is especially difficult with virtual resources, this
chapter is chock-full of helpful tips and tricks for tracing network traffic, finding
the root cause of networking failures, and debugging related services, such as
DHCP and DNS.

Chapter 13
This chapter shows you where OpenStack places logs and how to best read and
manage logs for monitoring purposes.

Chapter 14
This chapter describes what you need to back up within OpenStack as well as
best practices for recovering backups.

Chapter 15
For readers who need to get a specialized feature into OpenStack, this chapter de‐
scribes how to use DevStack to write custom middleware or a custom scheduler
to rebalance your resources.

Chapter 16
Because OpenStack is so, well, open, this chapter is dedicated to helping you nav‐
igate the community and find out where you can help and where you can get
help.

Chapter 17
Much of OpenStack is driver-oriented, so you can plug in different solutions to
the base set of services. This chapter describes some advanced configuration
topics.

Chapter 18
This chapter provides upgrade information based on the architectures used in
this book.

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Backmatter:

Appendix A
You can read a small selection of use cases from the OpenStack community with
some technical details and further resources.

Appendix B
These are shared legendary tales of image disappearances, VM massacres, and
crazy troubleshooting techniques to share those hard-learned lessons and
wisdom.

Appendix C
Read about how to track the OpenStack roadmap through the open and trans‐
parent development processes.

Appendix D
A preview of the new features in the Icehouse release of OpenStack.

Appendix E
So many OpenStack resources are available online because of the fast-moving na‐
ture of the project, but there are also resources listed here that the authors found
helpful while learning themselves.

Glossary
A list of terms used in this book is included, which is a subset of the larger Open‐
Stack glossary available online.

Why and How We Wrote This Book
We wrote this book because we have deployed and maintained OpenStack clouds for
at least a year, and wanted to be able to distribute this knowledge to others. After
months of being the point people for an OpenStack cloud, we also wanted to have a
document to hand to our system administrators so that they’d know how to operate
the cloud on a daily basis—both reactively and proactively. We wanted to provide
more detailed technical information about the decisions that deployers make along
the way.

We wrote this book to help you:

• Design and create an architecture for your first nontrivial OpenStack cloud. After
you read this guide, you’ll know which questions to ask and how to organize
your compute, networking, and storage resources and the associated software
packages.

• Perform the day-to-day tasks required to administer a cloud.

Preface | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

We wrote this book in a book sprint, which is a facilitated, rapid development pro‐
duction method for books. For more information, see the BookSprints site. Your
authors cobbled this book together in five days during February 2013, fueled by caf‐
feine and the best takeout food that Austin, Texas, could offer.

On the first day, we filled white boards with colorful sticky notes to start to shape this
nebulous book about how to architect and operate clouds:

We wrote furiously from our own experiences and bounced ideas between each other.
At regular intervals we reviewed the shape and organization of the book and further
molded it, leading to what you see today.

The team includes:

Tom Fifield
After learning about scalability in computing from particle physics experiments,
such as ATLAS at the Large Hadron Collider (LHC) at CERN, Tom worked on
OpenStack clouds in production to support the Australian public research sector.
Tom currently serves as an OpenStack community manager and works on Open‐
Stack documentation in his spare time.

Diane Fleming
Diane works on the OpenStack API documentation tirelessly. She helped out
wherever she could on this project.

xviii | Preface

www.it-ebooks.info

http://opsgui.de/1eLCIpY
http://www.it-ebooks.info/

Anne Gentle
Anne is the documentation coordinator for OpenStack and also served as an in‐
dividual contributor to the Google Documentation Summit in 2011, working
with the Open Street Maps team. She has worked on book sprints in the past,
with FLOSS Manuals’ Adam Hyde facilitating. Anne lives in Austin, Texas.

Lorin Hochstein
An academic turned software-developer-slash-operator, Lorin worked as the lead
architect for Cloud Services at Nimbis Services, where he deploys OpenStack for
technical computing applications. He has been working with OpenStack since the
Cactus release. Previously, he worked on high-performance computing exten‐
sions for OpenStack at University of Southern California’s Information Sciences
Institute (USC-ISI).

Adam Hyde
Adam facilitated this book sprint. He also founded the books sprint methodology
and is the most experienced book-sprint facilitator around. See http://www.book
sprints.net for more information. Adam founded FLOSS Manuals—a community
of some 3,000 individuals developing Free Manuals about Free Software. He is
also the founder and project manager for Booktype, an open source project for
writing, editing, and publishing books online and in print.

Jonathan Proulx
Jon has been piloting an OpenStack cloud as a senior technical architect at the
MIT Computer Science and Artificial Intelligence Lab for his researchers to have
as much computing power as they need. He started contributing to OpenStack
documentation and reviewing the documentation so that he could accelerate his
learning.

Everett Toews
Everett is a developer advocate at Rackspace making OpenStack and the Rack‐
space Cloud easy to use. Sometimes developer, sometimes advocate, and some‐
times operator, he’s built web applications, taught workshops, given presentations
around the world, and deployed OpenStack for production use by academia and
business.

Joe Topjian
Joe has designed and deployed several clouds at Cybera, a nonprofit where they
are building e-infrastructure to support entrepreneurs and local researchers in
Alberta, Canada. He also actively maintains and operates these clouds as a sys‐
tems architect, and his experiences have generated a wealth of troubleshooting
skills for cloud environments.

Preface | xix

www.it-ebooks.info

http://www.booksprints.net
http://www.booksprints.net
http://www.it-ebooks.info/

OpenStack community members
Many individual efforts keep a community book alive. Our community members
updated content for this book year-round. Also, a year after the first sprint, Jon
Proulx hosted a second two-day mini-sprint at MIT with the goal of updating the
book for the latest release. Since the book’s inception, more than 30 contributors
have supported this book. We have a tool chain for reviews, continuous builds,
and translations. Writers and developers continuously review patches, enter doc
bugs, edit content, and fix doc bugs. We want to recognize their efforts!

The following people have contributed to this book: Akihiro Motoki, Alejandro
Avella, Alexandra Settle, Andreas Jaeger, Andy McCallum, Benjamin Stassart,
Chandan Kumar, Chris Ricker, David Cramer, David Wittman, Denny Zhang,
Emilien Macchi, Gauvain Pocentek, Ignacio Barrio, James E. Blair, Jay Clark, Jeff
White, Jeremy Stanley, K Jonathan Harker, KATO Tomoyuki, Lana Brindley,
Laura Alves, Lee Li, Lukasz Jernas, Mario B. Codeniera, Matthew Kassawara, Mi‐
chael Still, Monty Taylor, Nermina Miller, Nigel Williams, Phil Hopkins, Russell
Bryant, Sahid Orentino Ferdjaoui, Sandy Walsh, Sascha Peilicke, Sean M. Collins,
Sergey Lukjanov, Shilla Saebi, Stephen Gordon, Summer Long, Uwe Stuehler,
Vaibhav Bhatkar, Veronica Musso, Ying Chun “Daisy” Guo, Zhengguang Ou, and
ZhiQiang Fan.

How to Contribute to This Book
The genesis of this book was an in-person event, but now that the book is in your
hands, we want you to contribute to it. OpenStack documentation follows the coding
principles of iterative work, with bug logging, investigating, and fixing. We also store
the source content on GitHub and invite collaborators through the OpenStack Gerrit
installation, which offers reviews. For the O’Reilly edition of this book, we are using
the company’s Atlas system, which also stores source content on GitHub and enables
collaboration among contributors.

Learn more about how to contribute to the OpenStack docs at Documentation How
To.

If you find a bug and can’t fix it or aren’t sure it’s really a doc bug, log a bug at Open‐
Stack Manuals. Tag the bug under Extra options with the ops-guide tag to indicate
that the bug is in this guide. You can assign the bug to yourself if you know how to fix
it. Also, a member of the OpenStack doc-core team can triage the doc bug.

xx | Preface

www.it-ebooks.info

http://opsgui.de/1eLCK10
http://opsgui.de/1eLCK10
http://opsgui.de/NPHdoC
http://opsgui.de/NPHdoC
http://www.it-ebooks.info/

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Command prompts
Commands prefixed with the # prompt should be executed by the root user.
These examples can also be executed using the sudo command, if available.

Commands prefixed with the $ prompt can be executed by any user, including
root.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xxi

www.it-ebooks.info

http://www.it-ebooks.info/

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/openstack/openstack-manuals.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the ti‐
tle, author, publisher, and ISBN. For example: "OpenStack Operations Guide by Tom
Fifield, Diane Fleming, Anne Gentle, Lorin Hochstein, Jonathan Proulx, Everett
Toews, and Joe Topjian (O’Reilly). Copyright 2014 OpenStack Foundation,
978-1-491-94695-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da‐
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and dozens more. For more information about Safari Books On‐
line, please visit us online.

xxii | Preface

www.it-ebooks.info

https://github.com/openstack/openstack-manuals
mailto:permissions@oreilly.com
http://www.safaribooksonline.com
http://opsgui.de/1eLCOxH
http://opsgui.de/NPHgRr
http://opsgui.de/1eLCOhh
http://opsgui.de/1eLCOhh
http://opsgui.de/NPHhou
http://opsgui.de/1eLCRtB
http://opsgui.de/NPHjwx
http://opsgui.de/1eLCQpq
http://www.it-ebooks.info/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/openstack-ops-guide.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The OpenStack Foundation supported the creation of this book with plane tickets to
Austin, lodging (including one adventurous evening without power after a wind‐
storm), and delicious food. For about $10,000, we could collaborate intensively for a
week in the same room at the Rackspace Austin office. The authors are all members
of the OpenStack Foundation, which you can join. Go to the Foundation website.

We want to acknowledge our excellent host, Rackers at Rackspace in Austin:

• Emma Richards of Rackspace guest relations took excellent care of our lunch or‐
ders and even set aside a pile of sticky notes that had fallen off the walls.

• Betsy Hagemeier, a fanatical executive assistant, took care of a room reshuffle and
helped us settle in for the week.

• The real estate team at Rackspace in Austin, also known as “The Victors,” were
super responsive.

• Adam Powell in Racker IT supplied us with bandwidth each day and second
monitors for those of us needing more screens.

Preface | xxiii

www.it-ebooks.info

http://bit.ly/openstack-ops-guide
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://opsgui.de/1eLCVcx
http://www.it-ebooks.info/

• On Wednesday night we had a fun happy hour with the Austin OpenStack Meet‐
up group, and Racker Katie Schmidt took great care of our group.

We also had some excellent input from outside the room:

• Tim Bell from CERN gave us feedback on the outline before we started and re‐
viewed it midweek.

• Sébastien Han has written excellent blogs and generously gave his permission for
reuse.

• Oisin Feeley read the book, made some edits, and emailed feedback right when
we asked.

Inside the book-sprint room with us each day was our book-sprint facilitator, Adam
Hyde. Without his tireless support and encouragement, we would have thought a
book of this scope was impossible in five days. Adam has proven again and again that
the book-sprint method is effective. He creates both tools and faith in collaborative
authoring at http://www.booksprints.net.

We couldn’t have pulled it off without so much supportive help and encouragement.

xxiv | Preface

www.it-ebooks.info

http://www.booksprints.net
http://www.it-ebooks.info/

PART I

Architecture

Designing an OpenStack cloud is a great achievement. It requires a robust under‐
standing of the requirements and needs of the cloud’s users to determine the best pos‐
sible configuration to meet them. OpenStack provides a great deal of flexibility to
achieve your needs, and this part of the book aims to shine light on many of the deci‐
sions you need to make during the process.

To design, deploy, and configure OpenStack, administrators must understand the log‐
ical architecture. A diagram can help you envision all the integrated services within
OpenStack and how they interact with each other.

OpenStack modules are one of the following types:

Daemon
Runs as a background process. On Linux platforms, a daemon is usually installed
as a service.

Script
Installs a virtual environment and runs tests.

Command-line interface (CLI)
Enables users to submit API calls to OpenStack services through commands.

As shown, end users can interact through the dashboard, CLIs, and APIs. All services
authenticate through a common Identity Service, and individual services interact
with each other through public APIs, except where privileged administrator com‐
mands are necessary. Figure I-1 shows the most common, but not the only logical ar‐
chitecture for an OpenStack cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure I-1. OpenStack Havana Logical Architecture (http://opsgui.de/1kYnyy1)

www.it-ebooks.info

http://opsgui.de/1kYnyy1
http://www.it-ebooks.info/

CHAPTER 1

Example Architectures

To understand the possibilities OpenStack offers, it’s best to start with basic architec‐
tures that are tried-and-true and have been tested in production environments. We
offer two such examples with basic pivots on the base operating system (Ubuntu and
Red Hat Enterprise Linux) and the networking architectures. There are other differ‐
ences between these two examples, but you should find the considerations made for
the choices in each as well as a rationale for why it worked well in a given environ‐
ment.

Because OpenStack is highly configurable, with many different backends and net‐
work configuration options, it is difficult to write documentation that covers all pos‐
sible OpenStack deployments. Therefore, this guide defines example architectures to
simplify the task of documenting, as well as to provide the scope for this guide. Both
of the offered architecture examples are currently running in production and serving
users.

As always, refer to the Glossary if you are unclear about any of the
terminology mentioned in these architectures.

Example Architecture—Legacy Networking (nova)
This particular example architecture has been upgraded from Grizzly to Havana and
tested in production environments where many public IP addresses are available for
assignment to multiple instances. You can find a second example architecture that
uses OpenStack Networking (neutron) after this section. Each example offers high

3

www.it-ebooks.info

http://www.it-ebooks.info/

availability, meaning that if a particular node goes down, another node with the same
configuration can take over the tasks so that service continues to be available.

Overview
The simplest architecture you can build upon for Compute has a single cloud con‐
troller and multiple compute nodes. The simplest architecture for Object Storage has
five nodes: one for identifying users and proxying requests to the API, then four for
storage itself to provide enough replication for eventual consistency. This example ar‐
chitecture does not dictate a particular number of nodes, but shows the thinking
and considerations that went into choosing this architecture including the features
offered.

Components

Component Details

OpenStack release Havana

Host operating system Ubuntu 12.04 LTS or Red Hat Enterprise Linux 6.5, including derivatives such as
CentOS and Scientific Linux

OpenStack package repository Ubuntu Cloud Archive or RDO*

Hypervisor KVM

Database MySQL*

Message queue RabbitMQ for Ubuntu; Qpid for Red Hat Enterprise Linux and derivatives

Networking service nova-network

Network manager FlatDHCP

Single nova-network or multi-host? multi-host*

Image Service (glance) backend file

Identity Service (keystone) driver SQL

Block Storage Service (cinder) backend LVM/iSCSI

Live Migration backend Shared storage using NFS*

Object storage OpenStack Object Storage (swift)

4 | Chapter 1: Example Architectures

www.it-ebooks.info

http://opsgui.de/NPHp7s
http://opsgui.de/1eLCZcm
http://www.it-ebooks.info/

An asterisk (*) indicates when the example architecture deviates from the settings of a
default installation. We’ll offer explanations for those deviations next.

The following features of OpenStack are supported by the example
architecture documented in this guide, but are optional:

• Dashboard: You probably want to offer a dashboard, but your
users may be more interested in API access only.

• Block storage: You don’t have to offer users block storage if
their use case only needs ephemeral storage on compute no‐
des, for example.

• Floating IP address: Floating IP addresses are public IP ad‐
dresses that you allocate from a predefined pool to assign to
virtual machines at launch. Floating IP address ensure that the
public IP address is available whenever an instance is booted.
Not every organization can offer thousands of public floating
IP addresses for thousands of instances, so this feature is con‐
sidered optional.

• Live migration: If you need to move running virtual machine
instances from one host to another with little or no service in‐
terruption, you would enable live migration, but it is consid‐
ered optional.

• Object storage: You may choose to store machine images on a
file system rather than in object storage if you do not have the
extra hardware for the required replication and redundancy
that OpenStack Object Storage offers.

Rationale
This example architecture has been selected based on the current default feature set of
OpenStack Havana, with an emphasis on stability. We believe that many clouds that
currently run OpenStack in production have made similar choices.

You must first choose the operating system that runs on all of the physical nodes.
While OpenStack is supported on several distributions of Linux, we used Ubuntu
12.04 LTS (Long Term Support), which is used by the majority of the development
community, has feature completeness compared with other distributions and has
clear future support plans.

We recommend that you do not use the default Ubuntu OpenStack install packages
and instead use the Ubuntu Cloud Archive. The Cloud Archive is a package reposito‐
ry supported by Canonical that allows you to upgrade to future OpenStack releases
while remaining on Ubuntu 12.04.

Example Architecture—Legacy Networking (nova) | 5

www.it-ebooks.info

http://opsgui.de/NPHp7s
http://www.it-ebooks.info/

KVM as a hypervisor complements the choice of Ubuntu—being a matched pair in
terms of support, and also because of the significant degree of attention it garners
from the OpenStack development community (including the authors, who mostly use
KVM). It is also feature complete, free from licensing charges and restrictions.

MySQL follows a similar trend. Despite its recent change of ownership, this database
is the most tested for use with OpenStack and is heavily documented. We deviate
from the default database, SQLite, because SQLite is not an appropriate database for
production usage.

The choice of RabbitMQ over other AMQP compatible options that are gaining sup‐
port in OpenStack, such as ZeroMQ and Qpid, is due to its ease of use and significant
testing in production. It also is the only option that supports features such as Com‐
pute cells. We recommend clustering with RabbitMQ, as it is an integral component
of the system and fairly simple to implement due to its inbuilt nature.

As discussed in previous chapters, there are several options for networking in Open‐
Stack Compute. We recommend FlatDHCP and to use Multi-Host networking mode
for high availability, running one nova-network daemon per OpenStack compute
host. This provides a robust mechanism for ensuring network interruptions are iso‐
lated to individual compute hosts, and allows for the direct use of hardware network
gateways.

Live Migration is supported by way of shared storage, with NFS as the distributed file
system.

Acknowledging that many small-scale deployments see running Object Storage just
for the storage of virtual machine images as too costly, we opted for the file backend
in the OpenStack Image Service (Glance). If your cloud will include Object Storage,
you can easily add it as a backend.

We chose the SQL backend for Identity Service (keystone) over others, such as LDAP.
This backend is simple to install and is robust. The authors acknowledge that many
installations want to bind with existing directory services and caution careful under‐
standing of the array of options available.

Block Storage (cinder) is installed natively on external storage nodes and uses the
LVM/iSCSI plug-in. Most Block Storage Service plug-ins are tied to particular vendor
products and implementations limiting their use to consumers of those hardware
platforms, but LVM/iSCSI is robust and stable on commodity hardware.

6 | Chapter 1: Example Architectures

www.it-ebooks.info

http://opsgui.de/1eLCZJr
http://www.it-ebooks.info/

While the cloud can be run without the OpenStack Dashboard, we consider it to be
indispensable, not just for user interaction with the cloud, but also as a tool for opera‐
tors. Additionally, the dashboard’s use of Django makes it a flexible framework for
extension.

Why not use the OpenStack Network Service (neutron)?
This example architecture does not use the OpenStack Network Service (neutron),
because it does not yet support multi-host networking and our organizations (univer‐
sity, government) have access to a large range of publicly-accessible IPv4 addresses.

Why use multi-host networking?

In a default OpenStack deployment, there is a single nova-network service that runs
within the cloud (usually on the cloud controller) that provides services such as net‐
work address translation (NAT), DHCP, and DNS to the guest instances. If the single
node that runs the nova-network service goes down, you cannot access your instan‐
ces, and the instances cannot access the Internet. The single node that runs the nova-
network service can become a bottleneck if excessive network traffic comes in and
goes out of the cloud.

Multi-host is a high-availability option for the network configura‐
tion, where the nova-network service is run on every compute
node instead of running on only a single node.

Detailed Description
The reference architecture consists of multiple compute nodes, a cloud controller, an
external NFS storage server for instance storage, and an OpenStack Block Storage
server for volume storage. A network time service (Network Time Protocol, or NTP)
synchronizes time on all the nodes. FlatDHCPManager in multi-host mode is used
for the networking. A logical diagram for this example architecture shows which
services are running on each node:

Example Architecture—Legacy Networking (nova) | 7

www.it-ebooks.info

http://opsgui.de/NPHqbu
http://www.it-ebooks.info/

The cloud controller runs the dashboard, the API services, the database (MySQL), a
message queue server (RabbitMQ), the scheduler for choosing compute resources
(nova-scheduler), Identity services (keystone, nova-consoleauth), Image services
(glance-api, glance-registry), services for console access of guests, and Block
Storage services, including the scheduler for storage resources (cinder-api and
cinder-scheduler).

Compute nodes are where the computing resources are held, and in our example ar‐
chitecture, they run the hypervisor (KVM), libvirt (the driver for the hypervisor,
which enables live migration from node to node), nova-compute, nova-api-metadata
(generally only used when running in multi-host mode, it retrieves instance-specific
metadata), nova-vncproxy, and nova-network.

8 | Chapter 1: Example Architectures

www.it-ebooks.info

http://www.it-ebooks.info/

The network consists of two switches, one for the management or private traffic, and
one that covers public access, including floating IPs. To support this, the cloud con‐
troller and the compute nodes have two network cards. The OpenStack Block Storage
and NFS storage servers only need to access the private network and therefore only
need one network card, but multiple cards run in a bonded configuration are recom‐
mended if possible. Floating IP access is direct to the Internet, whereas Flat IP access
goes through a NAT. To envision the network traffic, use this diagram:

Optional Extensions
You can extend this reference architecture as follows:

• Add additional cloud controllers (see Chapter 11).
• Add an OpenStack Storage service (see the Object Storage chapter in the Open‐

Stack Installation Guide for your distribution).
• Add additional OpenStack Block Storage hosts (see Chapter 11).

Example Architecture—OpenStack Networking
This chapter provides an example architecture using OpenStack Networking, also
known as the Neutron project, in a highly available environment.

Overview
A highly-available environment can be put into place if you require an environment
that can scale horizontally, or want your cloud to continue to be operational in case of
node failure. This example architecture has been written based on the current default
feature set of OpenStack Havana, with an emphasis on high availability.

Example Architecture—OpenStack Networking | 9

www.it-ebooks.info

http://www.it-ebooks.info/

Components

Component Details

OpenStack release Havana

Host operating system Red Hat Enterprise Linux 6.5

OpenStack package repository Red Hat Distributed OpenStack (RDO)

Hypervisor KVM

Database MySQL

Message queue Qpid

Networking service OpenStack Networking

Tenant Network Separation VLAN

Image Service (glance) backend GlusterFS

Identity Service (keystone) driver SQL

Block Storage Service (cinder) backend GlusterFS

Rationale
This example architecture has been selected based on the current default feature set of
OpenStack Havana, with an emphasis on high availability. This architecture is cur‐
rently being deployed in an internal Red Hat OpenStack cloud and used to run hos‐
ted and shared services, which by their nature must be highly available.

This architecture’s components have been selected for the following reasons:

Red Hat Enterprise Linux
You must choose an operating system that can run on all of the physical nodes.
This example architecture is based on Red Hat Enterprise Linux, which offers re‐
liability, long-term support, certified testing, and is hardened. Enterprise custom‐
ers, now moving into OpenStack usage, typically require these advantages.

RDO
The Red Hat Distributed OpenStack package offers an easy way to download the
most current OpenStack release that is built for the Red Hat Enterprise Linux
platform.

10 | Chapter 1: Example Architectures

www.it-ebooks.info

http://opsgui.de/1eLCXBh
http://www.it-ebooks.info/

KVM
KVM is the supported hypervisor of choice for Red Hat Enterprise Linux (and
included in distribution). It is feature complete and free from licensing charges
and restrictions.

MySQL
MySQL is used as the database backend for all databases in the OpenStack envi‐
ronment. MySQL is the supported database of choice for Red Hat Enterprise Li‐
nux (and included in distribution); the database is open source, scalable, and
handles memory well.

Qpid
Apache Qpid offers 100 percent compatibility with the Advanced Message Queu‐
ing Protocol Standard, and its broker is available for both C++ and Java.

OpenStack Networking
OpenStack Networking offers sophisticated networking functionality, including
Layer 2 (L2) network segregation and provider networks.

VLAN
Using a virtual local area network offers broadcast control, security, and physical
layer transparency. If needed, use VXLAN to extend your address space.

GlusterFS
GlusterFS offers scalable storage. As your environment grows, you can continue
to add more storage nodes (instead of being restricted, for example, by an expen‐
sive storage array).

Detailed Description

Node types
This section gives you a breakdown of the different nodes that make up the Open‐
Stack environment. A node is a physical machine that is provisioned with an operat‐
ing system, and running a defined software stack on top of it. Table 1-1 provides node
descriptions and specifications.

Example Architecture—OpenStack Networking | 11

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1-1. Node types

Type Description Example hardware

Controller Controller nodes are responsible for running the management software
services needed for the OpenStack environment to function. These nodes:

• Provide the front door that people access as well as the API
services that all other components in the environment talk to.

• Run a number of services in a highly available fashion, utilizing
Pacemaker and HAProxy to provide a virtual IP and load-balancing
functions so all controller nodes are being used.

• Supply highly available “infrastructure” services, such as MySQL
and Qpid, that underpin all the services.

• Provide what is known as “persistent storage” through services run
on the host as well. This persistent storage is backed onto the
storage nodes for reliability.

See Figure 1-3.

Model: Dell R620

CPU: 2 x Intel® Xeon® CPU E5-2620 0
@ 2.00 GHz

Memory: 32 GB

Disk: 2 x 300 GB 10000 RPM SAS
Disks

Network: 2 x 10G network ports

Compute Compute nodes run the virtual machine instances in OpenStack. They:

• Run the bare minimum of services needed to facilitate these
instances.

• Use local storage on the node for the virtual machines so that no
VM migration or instance recovery at node failure is possible.

See Figure 1-4.

Model: Dell R620

CPU: 2x Intel® Xeon® CPU E5-2650 0
@ 2.00 GHz

Memory: 128 GB

Disk: 2 x 600 GB 10000 RPM SAS
Disks

Network: 4 x 10G network ports (For
future proofing expansion)

Storage Storage nodes store all the data required for the environment, including
disk images in the Image Service library, and the persistent storage
volumes created by the Block Storage service. Storage nodes use
GlusterFS technology to keep the data highly available and scalable.

See Figure 1-6.

Model: Dell R720xd

CPU: 2 x Intel® Xeon® CPU E5-2620 0
@ 2.00 GHz

Memory: 64 GB

Disk: 2 x 500 GB 7200 RPM SAS Disks
+ 24 x 600 GB 10000 RPM SAS Disks

Raid Controller: PERC H710P
Integrated RAID Controller, 1 GB NV
Cache

Network: 2 x 10G network ports

12 | Chapter 1: Example Architectures

www.it-ebooks.info

http://www.it-ebooks.info/

Type Description Example hardware

Network Network nodes are responsible for doing all the virtual networking
needed for people to create public or private networks and uplink their
virtual machines into external networks. Network nodes:

• Form the only ingress and egress point for instances running on
top of OpenStack.

• Run all of the environment’s networking services, with the
exception of the networking API service (which runs on the
controller node).

See Figure 1-5.

Model: Dell R620

CPU: 1 x Intel® Xeon® CPU E5-2620 0
@ 2.00 GHz

Memory: 32 GB

Disk: 2 x 300 GB 10000 RPM SAS
Disks

Network: 5 x 10G network ports

Utility Utility nodes are used by internal administration staff only to provide a
number of basic system administration functions needed to get the
environment up and running and to maintain the hardware, OS, and
software on which it runs.

These nodes run services such as provisioning, configuration
management, monitoring, or GlusterFS management software. They are
not required to scale, although these machines are usually backed up.

Model: Dell R620

CPU: 2x Intel® Xeon® CPU E5-2620 0
@ 2.00 GHz

Memory: 32 GB

Disk: 2 x 500 GB 7200 RPM SAS Disks

Network: 2 x 10G network ports

Networking layout
The network contains all the management devices for all hardware in the environ‐
ment (for example, by including Dell iDrac7 devices for the hardware nodes, and
management interfaces for network switches). The network is accessed by internal
staff only when diagnosing or recovering a hardware issue.

OpenStack internal network. This network is used for OpenStack management func‐
tions and traffic, including services needed for the provisioning of physical nodes
(pxe, tftp, kickstart), traffic between various OpenStack node types using Open‐
Stack APIs and messages (for example, nova-compute talking to keystone or cinder-
volume talking to nova-api), and all traffic for storage data to the storage layer under‐
neath by the Gluster protocol. All physical nodes have at least one network interface
(typically eth0) in this network. This network is only accessible from other VLANs
on port 22 (for ssh access to manage machines).

Example Architecture—OpenStack Networking | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Public Network. This network is a combination of:
• IP addresses for public-facing interfaces on the controller nodes (which end users

will access the OpenStack services)
• A range of publicly routable, IPv4 network addresses to be used by OpenStack

Networking for floating IPs. You may be restricted in your access to IPv4 ad‐
dresses; a large range of IPv4 addresses is not necessary.

• Routers for private networks created within OpenStack.

This network is connected to the controller nodes so users can access the OpenStack
interfaces, and connected to the network nodes to provide VMs with publicly routa‐
ble traffic functionality. The network is also connected to the utility machines so that
any utility services that need to be made public (such as system monitoring) can be
accessed.

VM traffic network. This is a closed network that is not publicly routable and is simply
used as a private, internal network for traffic between virtual machines in OpenStack,
and between the virtual machines and the network nodes that provide l3 routes out to
the public network (and floating IPs for connections back in to the VMs). Because
this is a closed network, we are using a different address space to the others to clearly
define the separation. Only Compute and OpenStack Networking nodes need to be
connected to this network.

Node connectivity
The following section details how the nodes are connected to the different networks
(see “Networking layout”) and what other considerations need to take place (for ex‐
ample, bonding) when connecting nodes to the networks.

Initial deployment. Initially, the connection setup should revolve around keeping the
connectivity simple and straightforward in order to minimize deployment complexi‐
ty and time to deploy. The deployment shown in Figure 1-1 aims to have 1 x 10G
connectivity available to all compute nodes, while still leveraging bonding on appro‐
priate nodes for maximum performance.

14 | Chapter 1: Example Architectures

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. Basic node deployment

Connectivity for maximum performance. If the networking performance of the basic lay‐
out is not enough, you can move to Figure 1-2, which provides 2 x 10G network links
to all instances in the environment as well as providing more network bandwidth to
the storage layer.

Example Architecture—OpenStack Networking | 15

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-2. Performance node deployment

Node diagrams
The following diagrams (Figure 1-3 through Figure 1-6) include logical information
about the different types of nodes, indicating what services will be running on top of
them and how they interact with each other. The diagrams also illustrate how the
availability and scalability of services are achieved.

16 | Chapter 1: Example Architectures

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-3. Controller node

Example Architecture—OpenStack Networking | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-4. Compute node

Figure 1-5. Network node

18 | Chapter 1: Example Architectures

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-6. Storage node

Example Component Configuration
Table 1-2 and Table 1-3 include example configuration and considerations for both
third-party and OpenStack components:

Table 1-2. Third-party component configuration

Component Tuning Availability Scalability

MySQL binlog-format

= row

Master/master replication. However, both nodes are
not used at the same time. Replication keeps all
nodes as close to being up to date as possible
(although the asynchronous nature of the replication
means a fully consistent state is not possible).
Connections to the database only happen through a
Pacemaker virtual IP, ensuring that most problems
that occur with master-master replication can be
avoided.

Not heavily considered. Once
load on the MySQL server
increases enough that
scalability needs to be
considered, multiple masters
or a master/slave setup can
be used.

Example Architecture—OpenStack Networking | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Component Tuning Availability Scalability

Qpid max-

connec

tions=1000

worker-

threads=20

connection-

backlog=10, sasl
security enabled with
SASL-BASIC
authentication

Qpid is added as a resource to the Pacemaker
software that runs on Controller nodes where Qpid is
situated. This ensures only one Qpid instance is
running at one time, and the node with the
Pacemaker virtual IP will always be the node running
Qpid.

Not heavily considered.
However, Qpid can be
changed to run on all
controller nodes for
scalability and availability
purposes, and removed from
Pacemaker.

HAProxy maxconn 3000 HAProxy is a software layer-7 load balancer used to
front door all clustered OpenStack API components
and do SSL termination. HAProxy can be added as a
resource to the Pacemaker software that runs on the
Controller nodes where HAProxy is situated. This
ensures that only one HAProxy instance is running at
one time, and the node with the Pacemaker virtual IP
will always be the node running HAProxy.

Not considered. HAProxy has
small enough performance
overheads that a single
instance should scale
enough for this level of
workload. If extra scalability
is needed, keepalived or
other Layer-4 load balancing
can be introduced to be
placed in front of multiple
copies of HAProxy.

Memcached MAXCONN="8192"

CACHE

SIZE="30457"

Memcached is a fast in-memory key-value cache
software that is used by OpenStack components for
caching data and increasing performance.
Memcached runs on all controller nodes, ensuring
that should one go down, another instance of
Memcached is available.

Not considered. A single
instance of Memcached
should be able to scale to
the desired workloads. If
scalability is desired,
HAProxy can be placed in
front of Memcached (in raw
tcp mode) to utilize
multiple Memcached
instances for scalability.
However, this might cause
cache consistency issues.

20 | Chapter 1: Example Architectures

www.it-ebooks.info

http://www.it-ebooks.info/

Component Tuning Availability Scalability

Pacemaker Configured to use
corosync and cman
as a cluster
communication stack/
quorum manager, and
as a two-node cluster.

Pacemaker is the clustering software used to ensure
the availability of services running on the controller
and network nodes:

• Because Pacemaker is cluster software, the
software itself handles its own availability,
leveraging corosync and cman underneath.

• If you use the GlusterFS native client, no virtual
IP is needed, since the client knows all about
nodes after initial connection and
automatically routes around failures on the
client side.

• If you use the NFS or SMB adaptor, you will
need a virtual IP on which to mount the
GlusterFS volumes.

If more nodes need to be
made cluster aware,
Pacemaker can scale to 64
nodes.

GlusterFS glusterfs

performance profile
“virt” enabled on all
volumes. Volumes are
setup in two-node
replication.

Glusterfs is a clustered file system that is run on the
storage nodes to provide persistent scalable data
storage in the environment. Because all connections
to gluster use the gluster native mount points, the
gluster instances themselves provide availability
and failover functionality.

The scalability of GlusterFS
storage can be achieved by
adding in more storage
volumes.

Table 1-3. OpenStack component configuration

Component Node
type

Tuning Availability Scalability

Dashboard
(horizon)

Controller Configured to use Memcached as a
session store, neutron support is
enabled,
can_set_mount_point =

False

The dashboard is run on all
controller nodes, ensuring at
least once instance will be
available in case of node
failure. It also sits behind
HAProxy, which detects when
the software fails and routes
requests around the failing
instance.

The dashboard is run on
all controller nodes, so
scalability can be
achieved with additional
controller nodes.
HAProxy allows
scalability for the
dashboard as more
nodes are added.

Identity
(keystone)

Controller Configured to use Memcached for
caching and PKI for tokens.

Identity is run on all controller
nodes, ensuring at least once
instance will be available in
case of node failure. Identity
also sits behind HAProxy, which
detects when the software fails
and routes requests around the
failing instance.

Identity is run on all
controller nodes, so
scalability can be
achieved with additional
controller nodes.
HAProxy allows
scalability for Identity as
more nodes are added.

Example Architecture—OpenStack Networking | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Component Node
type

Tuning Availability Scalability

Image
Service
(glance)

Controller /var/lib/glance/images is
a GlusterFS native mount to a
Gluster volume off the storage layer.

The Image Service is run on all
controller nodes, ensuring at
least once instance will be
available in case of node
failure. It also sits behind
HAProxy, which detects when
the software fails and routes
requests around the failing
instance.

The Image Service is run
on all controller nodes,
so scalability can be
achieved with additional
controller nodes.
HAProxy allows
scalability for the Image
Service as more nodes
are added.

Compute
(nova)

Controller,
Compute

Configured to use Qpid,
qpid_heartbeat = 10,
configured to use Memcached for
caching, configured to use
libvirt, configured to use
neutron.

Configured nova-consoleauth
to use Memcached for session
management (so that it can have
multiple copies and run in a load
balancer).

The nova API, scheduler,
objectstore, cert, consoleauth,
conductor, and vncproxy
services are run on all
controller nodes, ensuring at
least once instance will be
available in case of node
failure. Compute is also behind
HAProxy, which detects when
the software fails and routes
requests around the failing
instance.

Compute’s compute and
conductor services, which run
on the compute nodes, are only
needed to run services on that
node, so availability of those
services is coupled tightly to
the nodes that are available. As
long as a compute node is up,
it will have the needed services
running on top of it.

The nova API, scheduler,
objectstore, cert,
consoleauth, conductor,
and vncproxy services
are run on all controller
nodes, so scalability can
be achieved with
additional controller
nodes. HAProxy allows
scalability for Compute
as more nodes are
added. The scalability of
services running on the
compute nodes
(compute, conductor) is
achieved linearly by
adding in more compute
nodes.

Block
Storage
(cinder)

Controller Configured to use Qpid,
qpid_heartbeat = 10,
configured to use a Gluster volume
from the storage layer as the
backend for Block Storage, using
the Gluster native client.

Block Storage API, scheduler,
and volume services are run on
all controller nodes, ensuring at
least once instance will be
available in case of node
failure. Block Storage also sits
behind HAProxy, which detects
if the software fails and routes
requests around the failing
instance.

Block Storage API,
scheduler and volume
services are run on all
controller nodes, so
scalability can be
achieved with additional
controller nodes.
HAProxy allows
scalability for Block
Storage as more nodes
are added.

22 | Chapter 1: Example Architectures

www.it-ebooks.info

http://www.it-ebooks.info/

Component Node
type

Tuning Availability Scalability

OpenStack
Networking
(neutron)

Controller,
Compute,
Network

Configured to use QPID,
qpid_heartbeat =

 10, kernel
namespace support enabled, ten
ant_network_type = vlan,
allow_overlapping_ips

= true, tenant_net
work_type = vlan,
bridge_uplinks = br-

ex:em2, bridge_mappings
= physnet1:br-ex

The OpenStack Networking
service is run on all controller
nodes, ensuring at least one
instance will be available in
case of node failure. It also sits
behind HAProxy, which detects
if the software fails and routes
requests around the failing
instance.

OpenStack Networking’s ovs-
agent, l3-agent-dhcp-
agent, and metadata-
agent services run on the
network nodes, as lsb
resources inside of Pacemaker.
This means that in the case of
network node failure, services
are kept running on another
node. Finally, the ovs-agent
service is also run on all
compute nodes, and in case of
compute node failure, the
other nodes will continue to
function using the copy of the
service running on them.

The OpenStack
Networking server
service is run on all
controller nodes, so
scalability can be
achieved with additional
controller nodes.
HAProxy allows
scalability for OpenStack
Networking as more
nodes are added.
Scalability of services
running on the network
nodes is not currently
supported by OpenStack
Networking, so they are
not be considered. One
copy of the services
should be sufficient to
handle the workload.
Scalability of the ovs-
agent running on
compute nodes is
achieved by adding in
more compute nodes as
necessary.

Parting Thoughts on Architectures
With so many considerations and options available, our hope is to provide a few
clearly-marked and tested paths for your OpenStack exploration. If you’re looking for
additional ideas, check out Appendix A, the OpenStack Installation Guides, or the
OpenStack User Stories page.

Parting Thoughts on Architectures | 23

www.it-ebooks.info

http://opsgui.de/NPFTC8
http://opsgui.de/1eLAAhX
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Provisioning and Deployment

A critical part of a cloud’s scalability is the amount of effort that it takes to run your
cloud. To minimize the operational cost of running your cloud, set up and use an au‐
tomated deployment and configuration infrastructure with a configuration manage‐
ment system, such as Puppet or Chef. Combined, these systems greatly reduce man‐
ual effort and the chance for operator error.

This infrastructure includes systems to automatically install the operating system’s in‐
itial configuration and later coordinate the configuration of all services automatically
and centrally, which reduces both manual effort and the chance for error. Examples
include Ansible, Chef, Puppet, and Salt. You can even use OpenStack to deploy
OpenStack, fondly named TripleO, for OpenStack On OpenStack.

Automated Deployment
An automated deployment system installs and configures operating systems on new
servers, without intervention, after the absolute minimum amount of manual work,
including physical racking, MAC-to-IP assignment, and power configuration. Typi‐
cally, solutions rely on wrappers around PXE boot and TFTP servers for the basic op‐
erating system install and then hand off to an automated configuration management
system.

Both Ubuntu and Red Hat Linux include mechanisms for configuring the operating
system, including preseed and kickstart, that you can use after a network boot. Typi‐
cally, these are used to bootstrap an automated configuration system. Alternatively,
you can use an image-based approach for deploying the operating system, such as
systemimager. You can use both approaches with a virtualized infrastructure, such as
when you run VMs to separate your control services and physical infrastructure.

25

www.it-ebooks.info

http://www.it-ebooks.info/

When you create a deployment plan, focus on a few vital areas because they are very
hard to modify post deployment. The next two sections talk about configurations for:

• Disk partioning and disk array setup for scalability
• Networking configuration just for PXE booting

Disk Partitioning and RAID
At the very base of any operating system are the hard drives on which the operating
system (OS) is installed.

You must complete the following configurations on the server’s hard drives:

• Partitioning, which provides greater flexibility for layout of operating system and
swap space, as described below.

• Adding to a RAID array (RAID stands for redundant array of independent
disks), based on the number of disks you have available, so that you can add ca‐
pacity as your cloud grows. Some options are described in more detail below.

The simplest option to get started is to use one hard drive with two partitions:

• File system to store files and directories, where all the data lives, including the
root partition that starts and runs the system

• Swap space to free up memory for processes, as an independent area of the physi‐
cal disk used only for swapping and nothing else

RAID is not used in this simplistic one-drive setup because generally for production
clouds, you want to ensure that if one disk fails, another can take its place. Instead,
for production, use more than one disk. The number of disks determine what types of
RAID arrays to build.

We recommend that you choose one of the following multiple disk options:

Option 1
Partition all drives in the same way in a horizontal fashion, as shown in
Figure 2-1.

With this option, you can assign different partitions to different RAID arrays.
You can allocate partition 1 of disk one and two to the /boot partition mirror.
You can make partition 2 of all disks the root partition mirror. You can use parti‐
tion 3 of all disks for a cinder-volumes LVM partition running on a RAID 10
array.

26 | Chapter 2: Provisioning and Deployment

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-1. Partition setup of drives

While you might end up with unused partitions, such as partition 1 in disk three
and four of this example, this option allows for maximum utilization of disk
space. I/O performance might be an issue as a result of all disks being used for all
tasks.

Option 2
Add all raw disks to one large RAID array, either hardware or software based.
You can partition this large array with the boot, root, swap, and LVM areas. This
option is simple to implement and uses all partitions. However, disk I/O might
suffer.

Option 3
Dedicate entire disks to certain partitions. For example, you could allocate disk
one and two entirely to the boot, root, and swap partitions under a RAID 1 mir‐
ror. Then, allocate disk three and four entirely to the LVM partition, also under a
RAID 1 mirror. Disk I/O should be better because I/O is focused on dedicated
tasks. However, the LVM partition is much smaller.

You may find that you can automate the partitioning itself. For ex‐
ample, MIT uses Fully Automatic Installation (FAI) to do the initial
PXE-based partition and then install using a combination of
min/max and percentage-based partitioning.

As with most architecture choices, the right answer depends on your environment. If
you are using existing hardware, you know the disk density of your servers and can
determine some decisions based on the options above. If you are going through a
procurement process, your user’s requirements also help you determine hardware

Automated Deployment | 27

www.it-ebooks.info

http://fai-project.org/
http://www.it-ebooks.info/

purchases. Here are some examples from a private cloud providing web developers
custom environments at AT&T. This example is from a specific deployment, so your
existing hardware or procurement opportunity may vary from this. AT&T uses three
types of hardware in its deployment:

• Hardware for controller nodes, used for all stateless OpenStack API services.
About 32–64 GB memory, small attached disk, one processor, varied number of
cores, such as 6–12.

• Hardware for compute nodes. Typically 256 or 144 GB memory, two processors,
24 cores. 4–6 TB direct attached storage, typically in a RAID 5 configuration.

• Hardware for storage nodes. Typically for these, the disk space is optimized for
the lowest cost per GB of storage while maintaining rack-space efficiency.

Again, the right answer depends on your environment. You have to make your deci‐
sion based on the trade-offs between space utilization, simplicity, and I/O perfor‐
mance.

Network Configuration
Network configuration is a very large topic that spans multiple areas of this book. For
now, make sure that your servers can PXE boot and successfully communicate with
the deployment server.

For example, you usually cannot configure NICs for VLANs when PXE booting. Ad‐
ditionally, you usually cannot PXE boot with bonded NICs. If you run into this sce‐
nario, consider using a simple 1 GB switch in a private network on which only your
cloud communicates.

Automated Configuration
The purpose of automatic configuration management is to establish and maintain the
consistency of a system without using human intervention. You want to maintain
consistency in your deployments so that you can have the same cloud every time, re‐
peatably. Proper use of automatic configuration-management tools ensures that com‐
ponents of the cloud systems are in particular states, in addition to simplifying de‐
ployment, and configuration change propagation.

These tools also make it possible to test and roll back changes, as they are fully repeat‐
able. Conveniently, a large body of work has been done by the OpenStack community
in this space. Puppet, a configuration management tool, even provides official mod‐
ules for OpenStack in an OpenStack infrastructure system known as Stackforge. Chef
configuration management is provided within https://github.com/stackforge/
openstack-chef-repo. Additional configuration management systems include Juju, An‐
sible, and Salt. Also, PackStack is a command-line utility for Red Hat Enterprise Li‐

28 | Chapter 2: Provisioning and Deployment

www.it-ebooks.info

http://opsgui.de/NPFUpL
https://github.com/stackforge/openstack-chef-repo
https://github.com/stackforge/openstack-chef-repo
http://www.it-ebooks.info/

nux and derivatives that uses Puppet modules to support rapid deployment of Open‐
Stack on existing servers over an SSH connection.

An integral part of a configuration-management system is the items that it controls.
You should carefully consider all of the items that you want, or do not want, to be
automatically managed. For example, you may not want to automatically format hard
drives with user data.

Remote Management
In our experience, most operators don’t sit right next to the servers running the
cloud, and many don’t necessarily enjoy visiting the data center. OpenStack should be
entirely remotely configurable, but sometimes not everything goes according to plan.

In this instance, having an out-of-band access into nodes running OpenStack compo‐
nents is a boon. The IPMI protocol is the de facto standard here, and acquiring hard‐
ware that supports it is highly recommended to achieve that lights-out data center
aim.

In addition, consider remote power control as well. While IPMI usually controls the
server’s power state, having remote access to the PDU that the server is plugged into
can really be useful for situations when everything seems wedged.

Parting Thoughts for Provisioning and Deploying
OpenStack
You can save time by understanding the use cases for the cloud you want to create.
Use cases for OpenStack are varied. Some include object storage only; others require
preconfigured compute resources to speed development-environment set up; and
others need fast provisioning of compute resources that are already secured per ten‐
ant with private networks. Your users may have need for highly redundant servers to
make sure their legacy applications continue to run. Perhaps a goal would be to archi‐
tect these legacy applications so that they run on multiple instances in a cloudy, fault-
tolerant way, but not make it a goal to add to those clusters over time. Your users may
indicate that they need scaling considerations because of heavy Windows server use.

You can save resources by looking at the best fit for the hardware you have in place
already. You might have some high-density storage hardware available. You could for‐
mat and repurpose those servers for OpenStack Object Storage. All of these consider‐
ations and input from users help you build your use case and your deployment plan.

Remote Management | 29

www.it-ebooks.info

http://www.it-ebooks.info/

For further research about OpenStack deployment, investigate the
supported and documented preconfigured, prepackaged installers
for OpenStack from companies such as Canonical, Cisco,
Cloudscaling, IBM, Metacloud, Mirantis, Piston, Rackspace, Red
Hat, SUSE, and SwiftStack.

Conclusion
The decisions you make with respect to provisioning and deployment will affect your
day-to-day, week-to-week, and month-to-month maintenance of the cloud. Your con‐
figuration management will be able to evolve over time. However, more thought and
design need to be done for upfront choices about deployment, disk partitioning, and
network configuration.

30 | Chapter 2: Provisioning and Deployment

www.it-ebooks.info

http://opsgui.de/NPFSy7
http://opsgui.de/1gwRmlS
http://opsgui.de/1eLAFSL
http://opsgui.de/NPFYG3
http://opsgui.de/1eLAGWE
http://opsgui.de/NPFWOy
http://opsgui.de/1eLAHKd
http://opsgui.de/1gwRm58
http://opsgui.de/NPFXlq
http://opsgui.de/NPFXlq
http://opsgui.de/1eLALK5
http://opsgui.de/NPG0hb
http://www.it-ebooks.info/

CHAPTER 3

Designing for Cloud Controllers and
Cloud Management

OpenStack is designed to be massively horizontally scalable, which allows all services
to be distributed widely. However, to simplify this guide, we have decided to discuss
services of a more central nature, using the concept of a cloud controller. A cloud con‐
troller is just a conceptual simplification. In the real world, you design an architecture
for your cloud controller that enables high availability so that if any node fails, anoth‐
er can take over the required tasks. In reality, cloud controller tasks are spread out
across more than a single node.

The cloud controller provides the central management system for OpenStack deploy‐
ments. Typically, the cloud controller manages authentication and sends messaging to
all the systems through a message queue.

For many deployments, the cloud controller is a single node. However, to have high
availability, you have to take a few considerations into account, which we’ll cover in
this chapter.

The cloud controller manages the following services for the cloud:

Databases
Tracks current information about users and instances, for example, in a database,
typically one database instance managed per service

Message queue services
All AMQP—Advanced Message Queue Protocol—messages for services are re‐
ceived and sent according to the queue broker

Conductor services
Proxy requests to a database

31

www.it-ebooks.info

http://www.it-ebooks.info/

Authentication and authorization for identity management
Indicates which users can do what actions on certain cloud resources; quota
management is spread out among services, however

Image-management services
Stores and serves images with metadata on each, for launching in the cloud

Scheduling services
Indicates which resources to use first; for example, spreading out where instances
are launched based on an algorithm

User dashboard
Provides a web-based frontend for users to consume OpenStack cloud services

API endpoints
Offers each service’s REST API access, where the API endpoint catalog is man‐
aged by the Identity Service

For our example, the cloud controller has a collection of nova-* components that
represent the global state of the cloud; talks to services such as authentication; main‐
tains information about the cloud in a database; communicates to all compute nodes
and storage workers through a queue; and provides API access. Each service running
on a designated cloud controller may be broken out into separate nodes for scalability
or availability.

As another example, you could use pairs of servers for a collective cloud controller—
one active, one standby—for redundant nodes providing a given set of related serv‐
ices, such as:

• Frontend web for API requests, the scheduler for choosing which compute node
to boot an instance on, Identity services, and the dashboard

• Database and message queue server (such as MySQL, RabbitMQ)
• Image Service for the image management

Now that you see the myriad designs for controlling your cloud, read more about the
further considerations to help with your design decisions.

Hardware Considerations
A cloud controller’s hardware can be the same as a compute node, though you may
want to further specify based on the size and type of cloud that you run.

It’s also possible to use virtual machines for all or some of the services that the cloud
controller manages, such as the message queuing. In this guide, we assume that all
services are running directly on the cloud controller.

32 | Chapter 3: Designing for Cloud Controllers and Cloud Management

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-1 contains common considerations to review when sizing hardware for the
cloud controller design.

Table 3-1. Cloud controller hardware sizing considerations

Consideration Ramification

How many instances will run at once? Size your database server accordingly, and scale out beyond one cloud controller if
many instances will report status at the same time and scheduling where a new
instance starts up needs computing power.

How many compute nodes will run at
once?

Ensure that your messaging queue handles requests successfully and size
accordingly.

How many users will access the API? If many users will make multiple requests, make sure that the CPU load for the
cloud controller can handle it.

How many users will access the
dashboard versus the REST API directly?

The dashboard makes many requests, even more than the API access, so add even
more CPU if your dashboard is the main interface for your users.

How many nova-api services do you
run at once for your cloud?

You need to size the controller with a core per service.

How long does a single instance run? Starting instances and deleting instances is demanding on the compute node but
also demanding on the controller node because of all the API queries and
scheduling needs.

Does your authentication system also
verify externally?

External systems such as LDAP or Active Directory require network connectivity
between the cloud controller and an external authentication system. Also ensure
that the cloud controller has the CPU power to keep up with requests.

Separation of Services
While our example contains all central services in a single location, it is possible and
indeed often a good idea to separate services onto different physical servers. Table 3-2
is a list of deployment scenarios we’ve seen and their justifications.

Table 3-2. Deployment scenarios

Scenario Justification

Run glance-*
servers on the
swift-proxy

server.

This deployment felt that the spare I/O on the Object Storage proxy server was sufficient and that the
Image Delivery portion of glance benefited from being on physical hardware and having good
connectivity to the Object Storage backend it was using.

Separation of Services | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Scenario Justification

Run a central
dedicated database
server.

This deployment used a central dedicated server to provide the databases for all services. This
approach simplified operations by isolating database server updates and allowed for the simple
creation of slave database servers for failover.

Run one VM per
service.

This deployment ran central services on a set of servers running KVM. A dedicated VM was created
for each service (nova-scheduler, rabbitmq, database, etc). This assisted the deployment with
scaling because administrators could tune the resources given to each virtual machine based on the
load it received (something that was not well understood during installation).

Use an external load
balancer.

This deployment had an expensive hardware load balancer in its organization. It ran multiple nova-
api and swift-proxy servers on different physical servers and used the load balancer to switch
between them.

One choice that always comes up is whether to virtualize. Some services, such as
nova-compute, swift-proxy and swift-object servers, should not be virtualized.
However, control servers can often be happily virtualized—the performance penalty
can usually be offset by simply running more of the service.

Database
OpenStack Compute uses a SQL database to store and retrieve stateful information.
MySQL is the popular database choice in the OpenStack community.

Loss of the database leads to errors. As a result, we recommend that you cluster your
database to make it failure tolerant. Configuring and maintaining a database cluster is
done outside OpenStack and is determined by the database software you choose to
use in your cloud environment. MySQL/Galera is a popular option for MySQL-based
databases.

Message Queue
Most OpenStack services communicate with each other using the message queue. For
example, Compute communicates to block storage services and networking services
through the message queue. Also, you can optionally enable notifications for any ser‐
vice. RabbitMQ, Qpid, and 0mq are all popular choices for a message-queue service.
In general, if the message queue fails or becomes inaccessible, the cluster grinds to a
halt and ends up in a read-only state, with information stuck at the point where the
last message was sent. Accordingly, we recommend that you cluster the message
queue. Be aware that clustered message queues can be a pain point for many Open‐
Stack deployments. While RabbitMQ has native clustering support, there have been
reports of issues when running it at a large scale. While other queuing solutions are
available, such as 0mq and Qpid, 0mq does not offer stateful queues. Qpid is the

34 | Chapter 3: Designing for Cloud Controllers and Cloud Management

www.it-ebooks.info

http://www.it-ebooks.info/

messaging system of choice for Red Hat and its derivatives. Qpid does not have native
clustering capabilities and requires a supplemental service, such as Pacemaker or
Corsync. For your message queue, you need to determine what level of data loss you
are comfortable with and whether to use an OpenStack project’s ability to retry multi‐
ple MQ hosts in the event of a failure, such as using Compute’s ability to do so.

Conductor Services
In the previous version of OpenStack, all nova-compute services required direct ac‐
cess to the database hosted on the cloud controller. This was problematic for two rea‐
sons: security and performance. With regard to security, if a compute node is com‐
promised, the attacker inherently has access to the database. With regard to perfor‐
mance, nova-compute calls to the database are single-threaded and blocking. This
creates a performance bottleneck because database requests are fulfilled serially rather
than in parallel.

The conductor service resolves both of these issues by acting as a proxy for the nova-
compute service. Now, instead of nova-compute directly accessing the database, it
contacts the nova-conductor service, and nova-conductor accesses the database on
nova-compute’s behalf. Since nova-compute no longer has direct access to the data‐
base, the security issue is resolved. Additionally, nova-conductor is a nonblocking
service, so requests from all compute nodes are fulfilled in parallel.

If you are using nova-network and multi-host networking in your
cloud environment, nova-compute still requires direct access to the
database.

The nova-conductor service is horizontally scalable. To make nova-conductor highly
available and fault tolerant, just launch more instances of the nova-conductor pro‐
cess, either on the same server or across multiple servers.

Application Programming Interface (API)
All public access, whether direct, through a command-line client, or through the
web-based dashboard, uses the API service. Find the API reference at http://api.open
stack.org/.

You must choose whether you want to support the Amazon EC2 compatibility APIs,
or just the OpenStack APIs. One issue you might encounter when running both APIs
is an inconsistent experience when referring to images and instances.

Conductor Services | 35

www.it-ebooks.info

http://api.openstack.org/
http://api.openstack.org/
http://www.it-ebooks.info/

For example, the EC2 API refers to instances using IDs that contain hexadecimal,
whereas the OpenStack API uses names and digits. Similarly, the EC2 API tends to
rely on DNS aliases for contacting virtual machines, as opposed to OpenStack, which
typically lists IP addresses.

If OpenStack is not set up in the right way, it is simple to have scenarios in which
users are unable to contact their instances due to having only an incorrect DNS alias.
Despite this, EC2 compatibility can assist users migrating to your cloud.

As with databases and message queues, having more than one API server is a good
thing. Traditional HTTP load-balancing techniques can be used to achieve a highly
available nova-api service.

Extensions
The API Specifications define the core actions, capabilities, and mediatypes of the
OpenStack API. A client can always depend on the availability of this core API, and
implementers are always required to support it in its entirety. Requiring strict adher‐
ence to the core API allows clients to rely upon a minimal level of functionality when
interacting with multiple implementations of the same API.

The OpenStack Compute API is extensible. An extension adds capabilities to an API
beyond those defined in the core. The introduction of new features, MIME types, ac‐
tions, states, headers, parameters, and resources can all be accomplished by means of
extensions to the core API. This allows the introduction of new features in the API
without requiring a version change and allows the introduction of vendor-specific ni‐
che functionality.

Scheduling
The scheduling services are responsible for determining the compute or storage node
where a virtual machine or block storage volume should be created. The scheduling
services receive creation requests for these resources from the message queue and
then begin the process of determining the appropriate node where the resource
should reside. This process is done by applying a series of user-configurable filters
against the available collection of nodes.

There are currently two schedulers: nova-scheduler for virtual machines and
cinder-scheduler for block storage volumes. Both schedulers are able to scale hori‐
zontally, so for high-availability purposes, or for very large or high-schedule-
frequency installations, you should consider running multiple instances of each
scheduler. The schedulers all listen to the shared message queue, so no special load
balancing is required.

36 | Chapter 3: Designing for Cloud Controllers and Cloud Management

www.it-ebooks.info

http://opsgui.de/NPFK1H
http://www.it-ebooks.info/

Images
The OpenStack Image Service consists of two parts: glance-api and glance-
registry. The former is responsible for the delivery of images; the compute node
uses it to download images from the backend. The latter maintains the metadata in‐
formation associated with virtual machine images and requires a database.

The glance-api part is an abstraction layer that allows a choice of backend. Current‐
ly, it supports:

OpenStack Object Storage
Allows you to store images as objects.

File system
Uses any traditional file system to store the images as files.

S3
Allows you to fetch images from Amazon S3.

HTTP
Allows you to fetch images from a web server. You cannot write images by using
this mode.

If you have an OpenStack Object Storage service, we recommend using this as a scal‐
able place to store your images. You can also use a file system with sufficient perfor‐
mance or Amazon S3—unless you do not need the ability to upload new images
through OpenStack.

Dashboard
The OpenStack dashboard (horizon) provides a web-based user interface to the vari‐
ous OpenStack components. The dashboard includes an end-user area for users to
manage their virtual infrastructure and an admin area for cloud operators to manage
the OpenStack environment as a whole.

The dashboard is implemented as a Python web application that normally runs in
Apache httpd. Therefore, you may treat it the same as any other web application,
provided it can reach the API servers (including their admin endpoints) over the
network.

Authentication and Authorization
The concepts supporting OpenStack’s authentication and authorization are derived
from well-understood and widely used systems of a similar nature. Users have cre‐
dentials they can use to authenticate, and they can be a member of one or more
groups (known as projects or tenants, interchangeably).

Images | 37

www.it-ebooks.info

http://www.it-ebooks.info/

For example, a cloud administrator might be able to list all instances in the cloud,
whereas a user can see only those in his current group. Resources quotas, such as the
number of cores that can be used, disk space, and so on, are associated with a project.

The OpenStack Identity Service (keystone) is the point that provides the authentica‐
tion decisions and user attribute information, which is then used by the other Open‐
Stack services to perform authorization. Policy is set in the policy.json file. For
information on how to configure these, see Chapter 9.

The Identity Service supports different plug-ins for authentication decisions and
identity storage. Examples of these plug-ins include:

• In-memory key-value Store (a simplified internal storage structure)
• SQL database (such as MySQL or PostgreSQL)
• PAM (Pluggable Authentication Module)
• LDAP (such as OpenLDAP or Microsoft’s Active Directory)

Many deployments use the SQL database; however, LDAP is also a popular choice for
those with existing authentication infrastructure that needs to be integrated.

Network Considerations
Because the cloud controller handles so many different services, it must be able to
handle the amount of traffic that hits it. For example, if you choose to host the Open‐
Stack Imaging Service on the cloud controller, the cloud controller should be able to
support the transferring of the images at an acceptable speed.

As another example, if you choose to use single-host networking where the cloud
controller is the network gateway for all instances, then the cloud controller must
support the total amount of traffic that travels between your cloud and the public In‐
ternet.

We recommend that you use a fast NIC, such as 10 GB. You can also choose to use
two 10 GB NICs and bond them together. While you might not be able to get a full
bonded 20 GB speed, different transmission streams use different NICs. For example,
if the cloud controller transfers two images, each image uses a different NIC and gets
a full 10 GB of bandwidth.

38 | Chapter 3: Designing for Cloud Controllers and Cloud Management

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Compute Nodes

In this chapter, we discuss some of the choices you need to consider when building
out your compute nodes. Compute nodes form the resource core of the OpenStack
Compute cloud, providing the processing, memory, network and storage resources to
run instances.

Choosing a CPU
The type of CPU in your compute node is a very important choice. First, ensure that
the CPU supports virtualization by way of VT-x for Intel chips and AMD-v for AMD
chips.

Consult the vendor documentation to check for virtualization sup‐
port. For Intel, read “Does my processor support Intel® Virtualiza‐
tion Technology?”. For AMD, read AMD Virtualization. Note that
your CPU may support virtualization but it may be disabled. Con‐
sult your BIOS documentation for how to enable CPU features.

The number of cores that the CPU has also affects the decision. It’s common for cur‐
rent CPUs to have up to 12 cores. Additionally, if an Intel CPU supports hyperthread‐
ing, those 12 cores are doubled to 24 cores. If you purchase a server that supports
multiple CPUs, the number of cores is further multiplied.

39

www.it-ebooks.info

http://opsgui.de/1eLAoiC
http://opsgui.de/1eLAoiC
http://opsgui.de/NPFI9Z
http://www.it-ebooks.info/

Multithread Considerations
Hyper-Threading is Intel’s proprietary simultaneous multithreading implementation
used to improve parallelization on their CPUs. You might consider enabling Hyper-
Threading to improve the performance of multithreaded applications.

Whether you should enable Hyper-Threading on your CPUs depends upon your use
case. For example, disabling Hyper-Threading can be beneficial in intense computing
environments. We recommend that you do performance testing with your local work‐
load with both Hyper-Threading on and off to determine what is more appropriate in
your case.

Choosing a Hypervisor
A hypervisor provides software to manage virtual machine access to the underlying
hardware. The hypervisor creates, manages, and monitors virtual machines. Open‐
Stack Compute supports many hypervisors to various degrees, including:

• KVM
• LXC
• QEMU
• VMWare ESX/ESXi
• Xen
• Hyper-V
• Docker

Probably the most important factor in your choice of hypervisor is your current usage
or experience. Aside from that, there are practical concerns to do with feature parity,
documentation, and the level of community experience.

For example, KVM is the most widely adopted hypervisor in the OpenStack commu‐
nity. Besides KVM, more deployments run Xen, LXC, VMWare, and Hyper-V than
the others listed. However, each of these are lacking some feature support or the doc‐
umentation on how to use them with OpenStack is out of date.

The best information available to support your choice is found on the Hypervisor
Support Matrix and in the configuration reference.

40 | Chapter 4: Compute Nodes

www.it-ebooks.info

http://opsgui.de/1eLApTQ
http://opsgui.de/NPFL5O
http://opsgui.de/1eLAs1W
http://opsgui.de/NPFOyn
http://opsgui.de/1eLAt5Z
http://opsgui.de/NPFMXx
http://opsgui.de/1eLAxm5
http://opsgui.de/NPFQ9w
http://opsgui.de/NPFQ9w
http://opsgui.de/1eLAwP2
http://www.it-ebooks.info/

It is also possible to run multiple hypervisors in a single deploy‐
ment using host aggregates or cells. However, an individual com‐
pute node can run only a single hypervisor at a time.

Instance Storage Solutions
As part of the procurement for a compute cluster, you must specify some storage for
the disk on which the instantiated instance runs. There are three main approaches to
providing this temporary-style storage, and it is important to understand the implica‐
tions of the choice.

They are:

• Off compute node storage—shared file system
• On compute node storage—shared file system
• On compute node storage—nonshared file system

In general, the questions you should ask when selecting storage are as follows:

• What is the platter count you can achieve?
• Do more spindles result in better I/O despite network access?
• Which one results in the best cost-performance scenario you’re aiming for?
• How do you manage the storage operationally?

Many operators use separate compute and storage hosts. Compute services and stor‐
age services have different requirements, and compute hosts typically require more
CPU and RAM than storage hosts. Therefore, for a fixed budget, it makes sense to
have different configurations for your compute nodes and your storage nodes. Com‐
pute nodes will be invested in CPU and RAM, and storage nodes will be invested in
block storage.

However, if you are more restricted in the number of physical hosts you have avail‐
able for creating your cloud and you want to be able to dedicate as many of your
hosts as possible to running instances, it makes sense to run compute and storage on
the same machines.

We’ll discuss the three main approaches to instance storage in the next few sections.

Instance Storage Solutions | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Off Compute Node Storage—Shared File System
In this option, the disks storing the running instances are hosted in servers outside of
the compute nodes.

If you use separate compute and storage hosts, you can treat your compute hosts as
“stateless.” As long as you don’t have any instances currently running on a compute
host, you can take it offline or wipe it completely without having any effect on the rest
of your cloud. This simplifies maintenance for the compute hosts.

There are several advantages to this approach:

• If a compute node fails, instances are usually easily recoverable.
• Running a dedicated storage system can be operationally simpler.
• You can scale to any number of spindles.
• It may be possible to share the external storage for other purposes.

The main downsides to this approach are:

• Depending on design, heavy I/O usage from some instances can affect unrelated
instances.

• Use of the network can decrease performance.

On Compute Node Storage—Shared File System
In this option, each compute node is specified with a significant amount of disk
space, but a distributed file system ties the disks from each compute node into a sin‐
gle mount.

The main advantage of this option is that it scales to external storage when you re‐
quire additional storage.

However, this option has several downsides:

• Running a distributed file system can make you lose your data locality compared
with nonshared storage.

• Recovery of instances is complicated by depending on multiple hosts.
• The chassis size of the compute node can limit the number of spindles able to be

used in a compute node.
• Use of the network can decrease performance.

42 | Chapter 4: Compute Nodes

www.it-ebooks.info

http://www.it-ebooks.info/

On Compute Node Storage—Nonshared File System
In this option, each compute node is specified with enough disks to store the instan‐
ces it hosts.

There are two main reasons why this is a good idea:

• Heavy I/O usage on one compute node does not affect instances on other com‐
pute nodes.

• Direct I/O access can increase performance.

This has several downsides:

• If a compute node fails, the instances running on that node are lost.
• The chassis size of the compute node can limit the number of spindles able to be

used in a compute node.
• Migrations of instances from one node to another are more complicated and rely

on features that may not continue to be developed.
• If additional storage is required, this option does not scale.

Running a shared file system on a storage system apart from the computes nodes is
ideal for clouds where reliability and scalability are the most important factors. Run‐
ning a shared file system on the compute nodes themselves may be best in a scenario
where you have to deploy to preexisting servers for which you have little to no con‐
trol over their specifications. Running a nonshared file system on the compute nodes
themselves is a good option for clouds with high I/O requirements and low concern
for reliability.

Issues with Live Migration
We consider live migration an integral part of the operations of the cloud. This fea‐
ture provides the ability to seamlessly move instances from one physical host to an‐
other, a necessity for performing upgrades that require reboots of the compute hosts,
but only works well with shared storage.

Live migration can also be done with nonshared storage, using a feature known as
KVM live block migration. While an earlier implementation of block-based migration
in KVM and QEMU was considered unreliable, there is a newer, more reliable imple‐
mentation of block-based live migration as of QEMU 1.4 and libvirt 1.0.2 that is also
compatible with OpenStack. However, none of the authors of this guide have first-
hand experience using live block migration.

Instance Storage Solutions | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Choice of File System
If you want to support shared-storage live migration, you need to configure a dis‐
tributed file system.

Possible options include:

• NFS (default for Linux)
• GlusterFS
• MooseFS
• Lustre

We’ve seen deployments with all, and recommend that you choose the one you are
most familiar with operating. If you are not familiar with any of these, choose NFS, as
it is the easiest to set up and there is extensive community knowledge about it.

Overcommitting
OpenStack allows you to overcommit CPU and RAM on compute nodes. This allows
you to increase the number of instances you can have running on your cloud, at the
cost of reducing the performance of the instances. OpenStack Compute uses the fol‐
lowing ratios by default:

• CPU allocation ratio: 16:1
• RAM allocation ratio: 1.5:1

The default CPU allocation ratio of 16:1 means that the scheduler allocates up to 16
virtual cores per physical core. For example, if a physical node has 12 cores, the
scheduler sees 192 available virtual cores. With typical flavor definitions of 4 virtual
cores per instance, this ratio would provide 48 instances on a physical node.

The formula for the number of virtual instances on a compute node is (OR*PC)/VC,
where:

OR
CPU overcommit ratio (virtual cores per physical core)

PC
Number of physical cores

VC
Number of virtual cores per instance

44 | Chapter 4: Compute Nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, the default RAM allocation ratio of 1.5:1 means that the scheduler allocates
instances to a physical node as long as the total amount of RAM associated with the
instances is less than 1.5 times the amount of RAM available on the physical node.

For example, if a physical node has 48 GB of RAM, the scheduler allocates instances
to that node until the sum of the RAM associated with the instances reaches 72 GB
(such as nine instances, in the case where each instance has 8 GB of RAM).

You must select the appropriate CPU and RAM allocation ratio for your particular
use case.

Logging
Logging is detailed more fully in Chapter 13. However, it is an important design con‐
sideration to take into account before commencing operations of your cloud.

OpenStack produces a great deal of useful logging information, however; but for the
information to be useful for operations purposes, you should consider having a cen‐
tral logging server to send logs to, and a log parsing/analysis system (such as
logstash).

Networking
Networking in OpenStack is a complex, multifaceted challenge. See Chapter 7.

Conclusion
Compute nodes are the workhorse of your cloud and the place where your users’ ap‐
plications will run. They are likely to be affected by your decisions on what to deploy
and how you deploy it. Their requirements should be reflected in the choices you
make.

Logging | 45

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Scaling

Whereas traditional applications required larger hardware to scale (“vertical scal‐
ing”), cloud-based applications typically request more, discrete hardware (“horizontal
scaling”). If your cloud is successful, eventually you must add resources to meet the
increasing demand.

To suit the cloud paradigm, OpenStack itself is designed to be horizontally scalable.
Rather than switching to larger servers, you procure more servers and simply install
identically configured services. Ideally, you scale out and load balance among groups
of functionally identical services (for example, compute nodes or nova-api nodes),
that communicate on a message bus.

The Starting Point
Determining the scalability of your cloud and how to improve it is an exercise with
many variables to balance. No one solution meets everyone’s scalability goals. Howev‐
er, it is helpful to track a number of metrics. Since you can define virtual hardware
templates, called “flavors” in OpenStack, you can start to make scaling decisions
based on the flavors you’ll provide. These templates define sizes for memory in RAM,
root disk size, amount of ephemeral data disk space available, and number of cores
for starters.

The default OpenStack flavors are shown in Table 5-1.

47

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-1. OpenStack default flavors

Name Virtual cores Memory Disk Ephemeral

m1.tiny 1 512 MB 1 GB 0 GB

m1.small 1 2 GB 10 GB 20 GB

m1.medium 2 4 GB 10 GB 40 GB

m1.large 4 8 GB 10 GB 80 GB

m1.xlarge 8 16 GB 10 GB 160 GB

The starting point for most is the core count of your cloud. By applying some ratios,
you can gather information about:

• The number of virtual machines (VMs) you expect to run, ((overcommit frac
tion × cores) / virtual cores per instance)

• How much storage is required (flavor disk size × number of instances)

You can use these ratios to determine how much additional infrastructure you need
to support your cloud.

Here is an example using the ratios for gathering scalability information for the num‐
ber of VMs expected as well as the storage needed. The following numbers support
(200 / 2) × 16 = 1600 VM instances and require 80 TB of storage for /var/lib/nova/
instances:

• 200 physical cores.
• Most instances are size m1.medium (two virtual cores, 50 GB of storage).
• Default CPU overcommit ratio (cpu_allocation_ratio in nova.conf) of 16:1.

However, you need more than the core count alone to estimate the load that the API
services, database servers, and queue servers are likely to encounter. You must also
consider the usage patterns of your cloud.

As a specific example, compare a cloud that supports a managed web-hosting plat‐
form with one running integration tests for a development project that creates one
VM per code commit. In the former, the heavy work of creating a VM happens only
every few months, whereas the latter puts constant heavy load on the cloud controller.
You must consider your average VM lifetime, as a larger number generally means less
load on the cloud controller.

48 | Chapter 5: Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Aside from the creation and termination of VMs, you must consider the impact of
users accessing the service—particularly on nova-api and its associated database.
Listing instances garners a great deal of information and, given the frequency with
which users run this operation, a cloud with a large number of users can increase the
load significantly. This can occur even without their knowledge—leaving the Open‐
Stack dashboard instances tab open in the browser refreshes the list of VMs every 30
seconds.

After you consider these factors, you can determine how many cloud controller cores
you require. A typical eight core, 8 GB of RAM server is sufficient for up to a rack of
compute nodes — given the above caveats.

You must also consider key hardware specifications for the performance of user VMs,
as well as budget and performance needs, including storage performance (spindles/
core), memory availability (RAM/core), network bandwidth (Gbps/core), and overall
CPU performance (CPU/core).

For a discussion of metric tracking, including how to extract met‐
rics from your cloud, see Chapter 13.

Adding Cloud Controller Nodes
You can facilitate the horizontal expansion of your cloud by adding nodes. Adding
compute nodes is straightforward—they are easily picked up by the existing installa‐
tion. However, you must consider some important points when you design your clus‐
ter to be highly available.

Recall that a cloud controller node runs several different services. You can install
services that communicate only using the message queue internally—nova-

scheduler and nova-console—on a new server for expansion. However, other inte‐
gral parts require more care.

You should load balance user-facing services such as dashboard, nova-api, or the Ob‐
ject Storage proxy. Use any standard HTTP load-balancing method (DNS round rob‐
in, hardware load balancer, or software such as Pound or HAProxy). One caveat with
dashboard is the VNC proxy, which uses the WebSocket protocol—something that an
L7 load balancer might struggle with. See also Horizon session storage.

You can configure some services, such as nova-api and glance-api, to use multiple
processes by changing a flag in their configuration file—allowing them to share work
between multiple cores on the one machine.

Adding Cloud Controller Nodes | 49

www.it-ebooks.info

http://opsgui.de/1eLAOFE
http://www.it-ebooks.info/

Several options are available for MySQL load balancing, and the
supported AMQP brokers have built-in clustering support. Infor‐
mation on how to configure these and many of the other services
can be found in Part II.

Segregating Your Cloud
When you want to offer users different regions to provide legal considerations for da‐
ta storage, redundancy across earthquake fault lines, or for low-latency API calls, you
segregate your cloud. Use one of the following OpenStack methods to segregate your
cloud: cells, regions, availability zones, or host aggregates.

Each method provides different functionality and can be best divided into two
groups:

• Cells and regions, which segregate an entire cloud and result in running separate
Compute deployments.

• Availability zones and host aggregates, which merely divide a single Compute de‐
ployment.

Table 5-2 provides a comparison view of each segregation method currently provided
by OpenStack Compute.

Table 5-2. OpenStack segregation methods

Cells Regions Availability zones Host aggregates

Use when
you need

A single API endpoint for
compute, or you require a
second level of scheduling.

Discrete regions with
separate API endpoints and
no coordination between
regions.

Logical separation
within your nova
deployment for
physical isolation or
redundancy.

To schedule a group
of hosts with
common features.

Example A cloud with multiple sites
where you can schedule VMs
“anywhere” or on a
particular site.

A cloud with multiple sites,
where you schedule VMs to
a particular site and you
want a shared infrastructure.

A single-site cloud
with equipment fed by
separate power
supplies.

Scheduling to hosts
with trusted
hardware support.

Overhead Considered experimental.

A new service, nova-cells.

Each cell has a full nova
installation except nova-api.

A different API endpoint for
every region.

Each region has a full nova
installation.

Configuration changes
to nova.conf.

Configuration
changes to
nova.conf.

Shared
services

Keystone

nova-api

Keystone Keystone

All nova services

Keystone

All nova services

50 | Chapter 5: Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Cells and Regions
OpenStack Compute cells are designed to allow running the cloud in a distributed
fashion without having to use more complicated technologies, or be invasive to exist‐
ing nova installations. Hosts in a cloud are partitioned into groups called cells. Cells
are configured in a tree. The top-level cell (“API cell”) has a host that runs the nova-
api service, but no nova-compute services. Each child cell runs all of the other typical
nova-* services found in a regular installation, except for the nova-api service. Each
cell has its own message queue and database service and also runs nova-cells, which
manages the communication between the API cell and child cells.

This allows for a single API server being used to control access to multiple cloud in‐
stallations. Introducing a second level of scheduling (the cell selection), in addition to
the regular nova-scheduler selection of hosts, provides greater flexibility to control
where virtual machines are run.

Contrast this with regions. Regions have a separate API endpoint per installation, al‐
lowing for a more discrete separation. Users wanting to run instances across sites
have to explicitly select a region. However, the additional complexity of a running a
new service is not required.

The OpenStack dashboard (horizon) currently uses only a single region, so one dash‐
board service should be run per region. Regions are a robust way to share some infra‐
structure between OpenStack Compute installations, while allowing for a high degree
of failure tolerance.

Availability Zones and Host Aggregates
You can use availability zones, host aggregates, or both to partition a nova deploy‐
ment.

Availability zones are implemented through and configured in a similar way to host
aggregates.

However, you use them for different reasons.

Availability zone
This enables you to arrange OpenStack compute hosts into logical groups and pro‐
vides a form of physical isolation and redundancy from other availability zones, such
as by using a separate power supply or network equipment.

You define the availability zone in which a specified compute host resides locally on
each server. An availability zone is commonly used to identify a set of servers that
have a common attribute. For instance, if some of the racks in your data center are on
a separate power source, you can put servers in those racks in their own availability
zone. Availability zones can also help separate different classes of hardware.

Segregating Your Cloud | 51

www.it-ebooks.info

http://www.it-ebooks.info/

When users provision resources, they can specify from which availability zone they
want their instance to be built. This allows cloud consumers to ensure that their ap‐
plication resources are spread across disparate machines to achieve high availability
in the event of hardware failure.

Host aggregates zone
This enables you to partition OpenStack Compute deployments into logical groups
for load balancing and instance distribution. You can use host aggregates to further
partition an availability zone. For example, you might use host aggregates to partition
an availability zone into groups of hosts that either share common resources, such as
storage and network, or have a special property, such as trusted computing hardware.

A common use of host aggregates is to provide information for use with the nova-
scheduler. For example, you might use a host aggregate to group a set of hosts that
share specific flavors or images.

The general case for this is setting key-value pairs in the aggregate metadata and
matching key-value pairs in instance type extra specs. The AggregateInstanceEx
traSpecsFilter in the filter scheduler will enforce that instances be scheduled only
on hosts in aggregates that define the same key to the same value.

An advanced use of this general concept allows different instance types to run with
different CPU and RAM allocation rations so that high-intensity computing loads
and low-intensity development and testing systems can share the same cloud without
either starving the high-use systems or wasting resources on low-utilization systems.
This works by setting metadata in your host aggregates and matching extra_specs
in your instance types.

The first step is setting the aggregate metadata keys cpu_allocation_ratio and
ram_allocation_ration to a floating-point value. The filter schedulers Aggregate
CoreFilter and AggregateRamFilter will use those values rather than the global de‐
faults in nova.conf when scheduling to hosts in the aggregate. It is important to be
cautious when using this feature, since each host can be in multiple aggregates but
should have only one allocation ratio for each resources. It is up to you to avoid
putting a host in multiple aggregates that define different values for the same
resource.

This is the first half of the equation. To get instance types that are guaranteed a partic‐
ular ratio, you must set the extra_specs in the instance type to the key-value pair
you want to match in the aggregate. For example, if you define extra specs cpu_al
location_ratio to “1.0”, then instances of that type will run in aggregates only where
the metadata key cpu_allocation_ratio is also defined as “1.0.” In practice, it is bet‐
ter to define an additional key-value pair in the aggregate metadata to match on rath‐
er than match directly on cpu_allocation_ratio or core_allocation_ratio. This

52 | Chapter 5: Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

allows better abstraction. For example, by defining a key overcommit and setting a
value of “high,” “medium,” or “low,” you could then tune the numeric allocation ratios
in the aggregates without also needing to change all instance types relating to them.

Previously, all services had an availability zone. Currently, only the
nova-compute service has its own availability zone. Services such as
nova-scheduler, nova-network, and nova-conductor have always
spanned all availability zones.
When you run any of the following operations, the services appear
in their own internal availability zone (CONF.internal_ser‐
vice_availability_zone):

• nova host-list (os-hosts)
• euca-describe-availability-zones verbose
• nova-manage service list

The internal availability zone is hidden in euca-describe-
availability_zones (nonverbose).
CONF.node_availability_zone has been renamed to CONF.de‐
fault_availability_zone and is used only by the nova-api and nova-
scheduler services.
CONF.node_availability_zone still works but is deprecated.

Scalable Hardware
While several resources already exist to help with deploying and installing Open‐
Stack, it’s very important to make sure that you have your deployment planned out
ahead of time. This guide presumes that you have at least set aside a rack for the
OpenStack cloud but also offers suggestions for when and what to scale.

Hardware Procurement
“The Cloud” has been described as a volatile environment where servers can be cre‐
ated and terminated at will. While this may be true, it does not mean that your
servers must be volatile. Ensuring that your cloud’s hardware is stable and configured
correctly means that your cloud environment remains up and running. Basically, put
effort into creating a stable hardware environment so that you can host a cloud that
users may treat as unstable and volatile.

OpenStack can be deployed on any hardware supported by an OpenStack-compatible
Linux distribution.

Scalable Hardware | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware does not have to be consistent, but it should at least have the same type of
CPU to support instance migration.

The typical hardware recommended for use with OpenStack is the standard value-
for-money offerings that most hardware vendors stock. It should be straightforward
to divide your procurement into building blocks such as “compute,” “object storage,”
and “cloud controller,” and request as many of these as you need. Alternatively, should
you be unable to spend more, if you have existing servers—provided they meet your
performance requirements and virtualization technology—they are quite likely to be
able to support OpenStack.

Capacity Planning
OpenStack is designed to increase in size in a straightforward manner. Taking into
account the considerations that we’ve mentioned in this chapter—particularly on the
sizing of the cloud controller—it should be possible to procure additional compute or
object storage nodes as needed. New nodes do not need to be the same specification,
or even vendor, as existing nodes.

For compute nodes, nova-scheduler will take care of differences in sizing having to
do with core count and RAM amounts; however, you should consider that the user
experience changes with differing CPU speeds. When adding object storage nodes, a
weight should be specified that reflects the capability of the node.

Monitoring the resource usage and user growth will enable you to know when to pro‐
cure. Chapter 13 details some useful metrics.

Burn-in Testing
Server hardware’s chance of failure is high at the start and the end of its life. As a re‐
sult, much effort in dealing with hardware failures while in production can be avoi‐
ded by appropriate burn-in testing to attempt to trigger the early-stage failures. The
general principle is to stress the hardware to its limits. Examples of burn-in tests in‐
clude running a CPU or disk benchmark for several days.

54 | Chapter 5: Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Storage Decisions

Storage is found in many parts of the OpenStack stack, and the differing types can
cause confusion to even experienced cloud engineers. This section focuses on persis‐
tent storage options you can configure with your cloud. It’s important to understand
the distinction between ephemeral storage and persistent storage.

Ephemeral Storage
If you deploy only the OpenStack Compute Service (nova), your users do not have
access to any form of persistent storage by default. The disks associated with VMs are
“ephemeral,” meaning that (from the user’s point of view) they effectively disappear
when a virtual machine is terminated.

Persistent Storage
Persistent storage means that the storage resource outlives any other resource and is
always available, regardless of the state of a running instance.

Today, OpenStack clouds explicitly support two types of persistent storage: object
storage and block storage.

Object Storage
With object storage, users access binary objects through a REST API. You may be fa‐
miliar with Amazon S3, which is a well-known example of an object storage system.
Object storage is implemented in OpenStack by the OpenStack Object Storage (swift)
project. If your intended users need to archive or manage large datasets, you want to
provide them with object storage. In addition, OpenStack can store your virtual

55

www.it-ebooks.info

http://www.it-ebooks.info/

machine (VM) images inside of an object storage system, as an alternative to storing
the images on a file system.

OpenStack Object Storage provides a highly scalable, highly available storage solution
by relaxing some of the constraints of traditional file systems. In designing and pro‐
curing for such a cluster, it is important to understand some key concepts about its
operation. Essentially, this type of storage is built on the idea that all storage hardware
fails, at every level, at some point. Infrequently encountered failures that would ham‐
string other storage systems, such as issues taking down RAID cards or entire servers,
are handled gracefully with OpenStack Object Storage.

A good document describing the Object Storage architecture is found within the de‐
veloper documentation—read this first. Once you understand the architecture, you
should know what a proxy server does and how zones work. However, some impor‐
tant points are often missed at first glance.

When designing your cluster, you must consider durability and availability. Under‐
stand that the predominant source of these is the spread and placement of your data,
rather than the reliability of the hardware. Consider the default value of the number
of replicas, which is three. This means that before an object is marked as having been
written, at least two copies exist—in case a single server fails to write, the third copy
may or may not yet exist when the write operation initially returns. Altering this
number increases the robustness of your data, but reduces the amount of storage you
have available. Next, look at the placement of your servers. Consider spreading them
widely throughout your data center’s network and power-failure zones. Is a zone a
rack, a server, or a disk?

Object Storage’s network patterns might seem unfamiliar at first. Consider these main
traffic flows:

• Among object, container, and account servers
• Between those servers and the proxies
• Between the proxies and your users

Object Storage is very “chatty” among servers hosting data—even a small cluster does
megabytes/second of traffic, which is predominantly, “Do you have the object?”/“Yes
I have the object!” Of course, if the answer to the aforementioned question is negative
or the request times out, replication of the object begins.

Consider the scenario where an entire server fails and 24 TB of data needs to be
transferred “immediately” to remain at three copies—this can put significant load on
the network.

56 | Chapter 6: Storage Decisions

www.it-ebooks.info

http://opsgui.de/NPG0xO
http://opsgui.de/NPG0xO
http://www.it-ebooks.info/

Another fact that’s often forgotten is that when a new file is being uploaded, the proxy
server must write out as many streams as there are replicas—giving a multiple of net‐
work traffic. For a three-replica cluster, 10 Gbps in means 30 Gbps out. Combining
this with the previous high bandwidth demands of replication is what results in the
recommendation that your private network be of significantly higher bandwidth than
your public need be. Oh, and OpenStack Object Storage communicates internally
with unencrypted, unauthenticated rsync for performance—you do want the private
network to be private.

The remaining point on bandwidth is the public-facing portion. The swift-proxy
service is stateless, which means that you can easily add more and use HTTP load-
balancing methods to share bandwidth and availability between them.

More proxies means more bandwidth, if your storage can keep up.

Block Storage
Block storage (sometimes referred to as volume storage) provides users with access to
block-storage devices. Users interact with block storage by attaching volumes to their
running VM instances.

These volumes are persistent: they can be detached from one instance and re-
attached to another, and the data remains intact. Block storage is implemented in
OpenStack by the OpenStack Block Storage (cinder) project, which supports multiple
backends in the form of drivers. Your choice of a storage backend must be supported
by a Block Storage driver.

Most block storage drivers allow the instance to have direct access to the underlying
storage hardware’s block device. This helps increase the overall read/write IO.

Experimental support for utilizing files as volumes began in the Folsom release. This
initially started as a reference driver for using NFS with cinder. By Grizzly’s release,
this has expanded into a full NFS driver as well as a GlusterFS driver.

These drivers work a little differently than a traditional “block” storage driver. On an
NFS or GlusterFS file system, a single file is created and then mapped as a “virtual”
volume into the instance. This mapping/translation is similar to how OpenStack uti‐
lizes QEMU’s file-based virtual machines stored in /var/lib/nova/instances.

OpenStack Storage Concepts
Table 6-1 explains the different storage concepts provided by OpenStack.

OpenStack Storage Concepts | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-1. OpenStack storage

Ephemeral storage Block storage Object storage

Used to… Run operating system and scratch
space

Add additional persistent storage to a
virtual machine (VM)

Store data, including VM
images

Accessed
through…

A file system A block device that can be
partitioned, formatted, and mounted
(such as, /dev/vdc)

The REST API

Accessible from… Within a VM Within a VM Anywhere

Managed by… OpenStack Compute (nova) OpenStack Block Storage (cinder) OpenStack Object Storage
(swift)

Persists until… VM is terminated Deleted by user Deleted by user

Sizing determined
by…

Administrator configuration of
size settings, known as flavors

User specification in initial request Amount of available
physical storage

Example of typical
usage…

10 GB first disk, 30 GB second disk 1 TB disk 10s of TBs of dataset
storage

File-level Storage (for Live Migration)
With file-level storage, users access stored data using the operating system’s file sys‐
tem interface. Most users, if they have used a network storage solution before, have
encountered this form of networked storage. In the Unix world, the most common
form of this is NFS. In the Windows world, the most common form is called CIFS
(previously, SMB).

OpenStack clouds do not present file-level storage to end users. However, it is impor‐
tant to consider file-level storage for storing instances under /var/lib/nova/instan
ces when designing your cloud, since you must have a shared file system if you want
to support live migration.

Choosing Storage Backends
Users will indicate different needs for their cloud use cases. Some may need fast ac‐
cess to many objects that do not change often, or want to set a time-to-live (TTL) val‐
ue on a file. Others may access only storage that is mounted with the file system itself,
but want it to be replicated instantly when starting a new instance. For other systems,
ephemeral storage—storage that is released when a VM attached to it is shut down—

58 | Chapter 6: Storage Decisions

www.it-ebooks.info

http://www.it-ebooks.info/

is the preferred way. When you select storage backends, ask the following questions
on behalf of your users:

• Do my users need block storage?
• Do my users need object storage?
• Do I need to support live migration?
• Should my persistent storage drives be contained in my compute nodes, or

should I use external storage?
• What is the platter count I can achieve? Do more spindles result in better I/O de‐

spite network access?
• Which one results in the best cost-performance scenario I’m aiming for?
• How do I manage the storage operationally?
• How redundant and distributed is the storage? What happens if a storage node

fails? To what extent can it mitigate my data-loss disaster scenarios?

To deploy your storage by using only commodity hardware, you can use a number of
open-source packages, as shown in Table 6-2.

Table 6-2. Persistent file-based
storage support

 Object Block File-level a

Swift

LVM

Ceph Experimental

Gluster

NFS

ZFS

a This list of open source file-level shared storage solutions
is not exhaustive; other open source solutions exist
(MooseFS). Your organization may already have deployed
a file-level shared storage solution that you can use.

Choosing Storage Backends | 59

www.it-ebooks.info

http://www.it-ebooks.info/

Storage Driver Support
In addition to the open source technologies, there are a number of proprietary solu‐
tions that are officially supported by OpenStack Block Storage. They are offered by
the following vendors:

• IBM (Storwize family/SVC, XIV)
• NetApp
• Nexenta
• SolidFire

You can find a matrix of the functionality provided by all of the supported Block Stor‐
age drivers on the OpenStack wiki.

Also, you need to decide whether you want to support object storage in your cloud.
The two common use cases for providing object storage in a compute cloud are:

• To provide users with a persistent storage mechanism
• As a scalable, reliable data store for virtual machine images

Commodity Storage Backend Technologies
This section provides a high-level overview of the differences among the different
commodity storage backend technologies. Depending on your cloud user’s needs, you
can implement one or many of these technologies in different combinations:

OpenStack Object Storage (swift)
The official OpenStack Object Store implementation. It is a mature technology
that has been used for several years in production by Rackspace as the technolo‐
gy behind Rackspace Cloud Files. As it is highly scalable, it is well-suited to man‐
aging petabytes of storage. OpenStack Object Storage’s advantages are better
integration with OpenStack (integrates with OpenStack Identity, works with the
OpenStack dashboard interface) and better support for multiple data center de‐
ployment through support of asynchronous eventual consistency replication.

Therefore, if you eventually plan on distributing your storage cluster across mul‐
tiple data centers, if you need unified accounts for your users for both compute
and object storage, or if you want to control your object storage with the Open‐
Stack dashboard, you should consider OpenStack Object Storage. More detail
can be found about OpenStack Object Storage in the section below.

60 | Chapter 6: Storage Decisions

www.it-ebooks.info

http://opsgui.de/1eLAQxg
http://www.it-ebooks.info/

Ceph
A scalable storage solution that replicates data across commodity storage nodes.
Ceph was originally developed by one of the founders of DreamHost and is cur‐
rently used in production there.

Ceph was designed to expose different types of storage interfaces to the end user:
it supports object storage, block storage, and file-system interfaces, although the
file-system interface is not yet considered production-ready. Ceph supports the
same API as swift for object storage and can be used as a backend for cinder
block storage as well as backend storage for glance images. Ceph supports “thin
provisioning,” implemented using copy-on-write.

This can be useful when booting from volume because a new volume can be pro‐
visioned very quickly. Ceph also supports keystone-based authentication (as of
version 0.56), so it can be a seamless swap in for the default OpenStack swift im‐
plementation.

Ceph’s advantages are that it gives the administrator more fine-grained control
over data distribution and replication strategies, enables you to consolidate your
object and block storage, enables very fast provisioning of boot-from-volume in‐
stances using thin provisioning, and supports a distributed file-system interface,
though this interface is not yet recommended for use in production deployment
by the Ceph project.

If you want to manage your object and block storage within a single system, or if
you want to support fast boot-from-volume, you should consider Ceph.

Gluster
A distributed, shared file system. As of Gluster version 3.3, you can use Gluster
to consolidate your object storage and file storage into one unified file and object
storage solution, which is called Gluster For OpenStack (GFO). GFO uses a cus‐
tomized version of swift that enables Gluster to be used as the backend storage.

The main reason to use GFO rather than regular swift is if you also want to sup‐
port a distributed file system, either to support shared storage live migration or
to provide it as a separate service to your end users. If you want to manage your
object and file storage within a single system, you should consider GFO.

LVM
The Logical Volume Manager is a Linux-based system that provides an abstrac‐
tion layer on top of physical disks to expose logical volumes to the operating sys‐
tem. The LVM backend implements block storage as LVM logical partitions.

On each host that will house block storage, an administrator must initially create
a volume group dedicated to Block Storage volumes. Blocks are created from
LVM logical volumes.

Choosing Storage Backends | 61

www.it-ebooks.info

http://opsgui.de/NPG1BD
http://www.it-ebooks.info/

LVM does not provide any replication. Typically, administra‐
tors configure RAID on nodes that use LVM as block storage
to protect against failures of individual hard drives. However,
RAID does not protect against a failure of the entire host.

ZFS
The Solaris iSCSI driver for OpenStack Block Storage implements blocks as ZFS
entities. ZFS is a file system that also has the functionality of a volume manager.
This is unlike on a Linux system, where there is a separation of volume manager
(LVM) and file system (such as, ext3, ext4, xfs, and btrfs). ZFS has a number of
advantages over ext4, including improved data-integrity checking.

The ZFS backend for OpenStack Block Storage supports only Solaris-based sys‐
tems, such as Illumos. While there is a Linux port of ZFS, it is not included in any
of the standard Linux distributions, and it has not been tested with OpenStack
Block Storage. As with LVM, ZFS does not provide replication across hosts on its
own; you need to add a replication solution on top of ZFS if your cloud needs to
be able to handle storage-node failures.

We don’t recommend ZFS unless you have previous experience with deploying it,
since the ZFS backend for Block Storage requires a Solaris-based operating sys‐
tem, and we assume that your experience is primarily with Linux-based systems.

Conclusion
We hope that you now have some considerations in mind and questions to ask your
future cloud users about their storage use cases. As you can see, your storage deci‐
sions will also influence your network design for performance and security needs.
Continue with us to make more informed decisions about your OpenStack cloud
design.

62 | Chapter 6: Storage Decisions

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Network Design

OpenStack provides a rich networking environment, and this chapter details the re‐
quirements and options to deliberate when designing your cloud.

If this is the first time you are deploying a cloud infrastructure in
your organization, after reading this section, your first conversa‐
tions should be with your networking team. Network usage in a
running cloud is vastly different from traditional network deploy‐
ments and has the potential to be disruptive at both a connectivity
and a policy level.

For example, you must plan the number of IP addresses that you need for both your
guest instances as well as management infrastructure. Additionally, you must re‐
search and discuss cloud network connectivity through proxy servers and firewalls.

In this chapter, we’ll give some examples of network implementations to consider and
provide information about some of the network layouts that OpenStack uses. Finally,
we have some brief notes on the networking services that are essential for stable oper‐
ation.

Management Network
A management network (a separate network for use by your cloud operators) typical‐
ly consists of a separate switch and separate NICs (network interface cards), and is a
recommended option. This segregation prevents system administration and the mon‐
itoring of system access from being disrupted by traffic generated by guests.

Consider creating other private networks for communication between internal com‐
ponents of OpenStack, such as the message queue and OpenStack Compute. Using a

63

www.it-ebooks.info

http://www.it-ebooks.info/

virtual local area network (VLAN) works well for these scenarios because it provides
a method for creating multiple virtual networks on a physical network.

Public Addressing Options
There are two main types of IP addresses for guest virtual machines: fixed IPs and
floating IPs. Fixed IPs are assigned to instances on boot, whereas floating IP addresses
can change their association between instances by action of the user. Both types of IP
addresses can be either public or private, depending on your use case.

Fixed IP addresses are required, whereas it is possible to run OpenStack without
floating IPs. One of the most common use cases for floating IPs is to provide public
IP addresses to a private cloud, where there are a limited number of IP addresses
available. Another is for a public cloud user to have a “static” IP address that can be
reassigned when an instance is upgraded or moved.

Fixed IP addresses can be private for private clouds, or public for public clouds.
When an instance terminates, its fixed IP is lost. It is worth noting that newer users of
cloud computing may find their ephemeral nature frustrating.

IP Address Planning
An OpenStack installation can potentially have many subnets (ranges of IP addresses)
and different types of services in each. An IP address plan can assist with a shared
understanding of network partition purposes and scalability. Control services can
have public and private IP addresses, and as noted above, there are a couple of op‐
tions for an instance’s public addresses.

An IP address plan might be broken down into the following sections:

Subnet router
Packets leaving the subnet go via this address, which could be a dedicated router
or a nova-network service.

Control services public interfaces
Public access to swift-proxy, nova-api, glance-api, and horizon come to these
addresses, which could be on one side of a load balancer or pointing at individual
machines.

Object Storage cluster internal communications
Traffic among object/account/container servers and between these and the proxy
server’s internal interface uses this private network.

Compute and storage communications
If ephemeral or block storage is external to the compute node, this network is
used.

64 | Chapter 7: Network Design

www.it-ebooks.info

http://www.it-ebooks.info/

Out-of-band remote management
If a dedicated remote access controller chip is included in servers, often these are
on a separate network.

In-band remote management
Often, an extra (such as 1 GB) interface on compute or storage nodes is used for
system administrators or monitoring tools to access the host instead of going
through the public interface.

Spare space for future growth
Adding more public-facing control services or guest instance IPs should always
be part of your plan.

For example, take a deployment that has both OpenStack Compute and Object Stor‐
age, with private ranges 172.22.42.0/24 and 172.22.87.0/26 available. One way to seg‐
regate the space might be as follows:

172.22.42.0/24:
172.22.42.1 - 172.22.42.3 - subnet routers
172.22.42.4 - 172.22.42.20 - spare for networks
172.22.42.21 - 172.22.42.104 - Compute node remote access controllers
 (inc spare)
172.22.42.105 - 172.22.42.188 - Compute node management interfaces (inc spare)
172.22.42.189 - 172.22.42.208 - Swift proxy remote access controllers
 (inc spare)
172.22.42.209 - 172.22.42.228 - Swift proxy management interfaces (inc spare)
172.22.42.229 - 172.22.42.252 - Swift storage servers remote access controllers
 (inc spare)
172.22.42.253 - 172.22.42.254 - spare
172.22.87.0/26:
172.22.87.1 - 172.22.87.3 - subnet routers
172.22.87.4 - 172.22.87.24 - Swift proxy server internal interfaces
 (inc spare)
172.22.87.25 - 172.22.87.63 - Swift object server internal interfaces
 (inc spare)

A similar approach can be taken with public IP addresses, taking note that large, flat
ranges are preferred for use with guest instance IPs. Take into account that for some
OpenStack networking options, a public IP address in the range of a guest instance
public IP address is assigned to the nova-compute host.

Network Topology
OpenStack Compute with nova-network provides predefined network deployment
models, each with its own strengths and weaknesses. The selection of a network man‐
ager changes your network topology, so the choice should be made carefully. You also
have a choice between the tried-and-true legacy nova-network settings or the

Network Topology | 65

www.it-ebooks.info

http://www.it-ebooks.info/

neutron project for OpenStack Networking. Both offer networking for launched in‐
stances with different implementations and requirements.

For OpenStack Networking with the neutron project, typical configurations are docu‐
mented with the idea that any setup you can configure with real hardware you can re-
create with a software-defined equivalent. Each tenant can contain typical network el‐
ements such as routers, and services such as DHCP.

Table 7-1 discusses the networking deployment options for both legacy nova-network
options and an equivalent neutron configuration.

Table 7-1. Networking deployment options

Network
deployment
model

Strengths Weaknesses Neutron equivalent

Flat Extremely simple
topology.

No DHCP overhead.

Requires file injection into
the instance to configure
network interfaces.

Configure a single bridge as the integration
bridge (br-int) and connect it to a physical
network interface with the Modular Layer 2
(ML2) plug-in, which uses Open vSwitch by
default.

FlatDHCP Relatively simple to
deploy.

Standard networking.

Works with all guest
operating systems.

Requires its own DHCP
broadcast domain.

Configure DHCP agents and routing agents.
Network Address Translation (NAT) performed
outside of compute nodes, typically on one or
more network nodes.

VlanManager Each tenant is isolated
to its own VLANs.

More complex to set up.

Requires its own DHCP
broadcast domain.

Requires many VLANs to be
trunked onto a single port.

Standard VLAN number
limitation.

Switches must support
802.1q VLAN tagging.

Isolated tenant networks implement some form
of isolation of layer 2 traffic between distinct
networks. VLAN tagging is key concept, where
traffic is “tagged” with an ordinal identifier for
the VLAN. Isolated network implementations
may or may not include additional services like
DHCP, NAT, and routing.

66 | Chapter 7: Network Design

www.it-ebooks.info

http://www.it-ebooks.info/

Network
deployment
model

Strengths Weaknesses Neutron equivalent

FlatDHCP Multi-
host with high
availability (HA)

Networking failure is
isolated to the VMs
running on the
affected hypervisor.

DHCP traffic can be
isolated within an
individual host.

Network traffic is
distributed to the
compute nodes.

More complex to set up.

Compute nodes typically
need IP addresses accessible
by external networks.

Options must be carefully
configured for live migration
to work with networking
services.

Configure neutron with multiple DHCP and
layer-3 agents. Network nodes are not able to
failover to each other, so the controller runs
networking services, such as DHCP. Compute
nodes run the ML2 plug-in with support for
agents such as Open vSwitch or Linux Bridge.

Both nova-network and neutron services provide similar capabilities, such as VLAN
between VMs. You also can provide multiple NICs on VMs with either service. Fur‐
ther discussion follows.

VLAN Configuration Within OpenStack VMs
VLAN configuration can be as simple or as complicated as desired. The use of
VLANs has the benefit of allowing each project its own subnet and broadcast segre‐
gation from other projects. To allow OpenStack to efficiently use VLANs, you must
allocate a VLAN range (one for each project) and turn each compute node switch
port into a trunk port.

For example, if you estimate that your cloud must support a maximum of 100
projects, pick a free VLAN range that your network infrastructure is currently not us‐
ing (such as VLAN 200–299). You must configure OpenStack with this range and also
configure your switch ports to allow VLAN traffic from that range.

Multi-NIC Provisioning
OpenStack Compute has the ability to assign multiple NICs to instances on a per-
project basis. This is generally an advanced feature and not an everyday request. This
can easily be done on a per-request basis, though. However, be aware that a second
NIC uses up an entire subnet or VLAN. This decrements your total number of sup‐
ported projects by one.

Multi-Host and Single-Host Networking
The nova-network service has the ability to operate in a multi-host or single-host
mode. Multi-host is when each compute node runs a copy of nova-network and the
instances on that compute node use the compute node as a gateway to the Internet.

Network Topology | 67

www.it-ebooks.info

http://www.it-ebooks.info/

The compute nodes also host the floating IPs and security groups for instances on
that node. Single-host is when a central server—for example, the cloud controller—
runs the nova-network service. All compute nodes forward traffic from the instances
to the cloud controller. The cloud controller then forwards traffic to the Internet. The
cloud controller hosts the floating IPs and security groups for all instances on all
compute nodes in the cloud.

There are benefits to both modes. Single-node has the downside of a single point of
failure. If the cloud controller is not available, instances cannot communicate on the
network. This is not true with multi-host, but multi-host requires that each compute
node has a public IP address to communicate on the Internet. If you are not able to
obtain a significant block of public IP addresses, multi-host might not be an option.

Services for Networking
OpenStack, like any network application, has a number of standard considerations to
apply, such as NTP and DNS.

NTP
Time synchronization is a critical element to ensure continued operation of Open‐
Stack components. Correct time is necessary to avoid errors in instance scheduling,
replication of objects in the object store, and even matching log timestamps for de‐
bugging.

All servers running OpenStack components should be able to access an appropriate
NTP server. You may decide to set up one locally or use the public pools available
from the Network Time Protocol project.

DNS
OpenStack does not currently provide DNS services, aside from the dnsmasq dae‐
mon, which resides on nova-network hosts. You could consider providing a dynamic
DNS service to allow instances to update a DNS entry with new IP addresses. You can
also consider making a generic forward and reverse DNS mapping for instances’ IP
addresses, such as vm-203-0-113-123.example.com.

Conclusion
Armed with your IP address layout and numbers and knowledge about the topologies
and services you can use, it’s now time to prepare the network for your installation.
Be sure to also check out the OpenStack Security Guide for tips on securing your net‐
work. We wish you a good relationship with your networking team!

68 | Chapter 7: Network Design

www.it-ebooks.info

http://opsgui.de/NPFRua
http://opsgui.de/NPG4NW
http://www.it-ebooks.info/

PART II

Operations

Congratulations! By now, you should have a solid design for your cloud. We now rec‐
ommend that you turn to the OpenStack Installation Guide (http://opsgui.de/
1eLCvD8 for Ubuntu, for example), which contains a step-by-step guide on how to
manually install the OpenStack packages and dependencies on your cloud.

While it is important for an operator to be familiar with the steps involved in deploy‐
ing OpenStack, we also strongly encourage you to evaluate configuration-
management tools, such as Puppet or Chef, which can help automate this deployment
process.

In the remainder of this guide, we assume that you have successfully deployed an
OpenStack cloud and are able to perform basic operations such as adding images,
booting instances, and attaching volumes.

As your focus turns to stable operations, we recommend that you do skim the re‐
mainder of this book to get a sense of the content. Some of this content is useful to
read in advance so that you can put best practices into effect to simplify your life in
the long run. Other content is more useful as a reference that you might turn to when
an unexpected event occurs (such as a power failure), or to troubleshoot a particular
problem.

www.it-ebooks.info

http://opsgui.de/1eLCvD8
http://opsgui.de/1eLCvD8
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Lay of the Land

This chapter helps you set up your working environment and use it to take a look
around your cloud.

Using the OpenStack Dashboard for Administration
As a cloud administrative user, you can use the OpenStack dashboard to create and
manage projects, users, images, and flavors. Users are allowed to create and manage
images within specified projects and to share images, depending on the Image Service
configuration. Typically, the policy configuration allows admin users only to set quo‐
tas and create and manage services. The dashboard provides an Admin tab with a
System Panel and Identity Panel. These interfaces give you access to system informa‐
tion and usage as well as to settings for configuring what end users can do. Refer to
the OpenStack Admin User Guide for detailed how-to information about using the
dashboard as an admin user.

Command-Line Tools
We recommend using a combination of the OpenStack command-line interface (CLI)
tools and the OpenStack dashboard for administration. Some users with a back‐
ground in other cloud technologies may be using the EC2 Compatibility API, which
uses naming conventions somewhat different from the native API. We highlight those
differences.

We strongly suggest that you install the command-line clients from the Python Pack‐
age Index (PyPI) instead of from the distribution packages. The clients are under
heavy development, and it is very likely at any given time that the version of the pack‐
ages distributed by your operating-system vendor are out of date.

71

www.it-ebooks.info

http://opsgui.de/NPGcgz
http://opsgui.de/1eLBdb8
http://opsgui.de/1eLBdb8
http://www.it-ebooks.info/

The pip utility is used to manage package installation from the PyPI archive and is
available in the python-pip package in most Linux distributions. Each OpenStack
project has its own client, so depending on which services your site runs, install some
or all of the following packages:

• python-novaclient (nova CLI)
• python-glanceclient (glance CLI)
• python-keystoneclient (keystone CLI)
• python-cinderclient (cinder CLI)
• python-swiftclient (swift CLI)
• python-neutronclient (neutron CLI)

Installing the Tools
To install (or upgrade) a package from the PyPI archive with pip, as root:

pip install [--upgrade] <package-name>

To remove the package:

pip uninstall <package-name>

If you need even newer versions of the clients, pip can install directly from the up‐
stream git repository using the -e flag. You must specify a name for the Python egg
that is installed. For example:

pip install -e git+https://github.com/openstack/
 python-novaclient.git#egg=python-novaclient

If you support the EC2 API on your cloud, you should also install the euca2ools
package or some other EC2 API tool so that you can get the same view your users
have. Using EC2 API-based tools is mostly out of the scope of this guide, though we
discuss getting credentials for use with it.

Administrative Command-Line Tools
There are also several *-manage command-line tools. These are installed with the
project’s services on the cloud controller and do not need to be installed separately:

• nova-manage

• glance-manage

• keystone-manage

• cinder-manage

72 | Chapter 8: Lay of the Land

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike the CLI tools mentioned above, the *-manage tools must be run from the
cloud controller, as root, because they need read access to the config files such
as /etc/nova/nova.conf and to make queries directly against the database rather
than against the OpenStack API endpoints.

The existence of the *-manage tools is a legacy issue. It is a goal of
the OpenStack project to eventually migrate all of the remaining
functionality in the *-manage tools into the API-based tools. Until
that day, you need to SSH into the cloud controller node to per‐
form some maintenance operations that require one of the
*-manage tools.

Getting Credentials
You must have the appropriate credentials if you want to use the command-line tools
to make queries against your OpenStack cloud. By far, the easiest way to obtain au‐
thentication credentials to use with command-line clients is to use the OpenStack
dashboard. From the top-right navigation row, select Project, then Access & Security,
then API Access to access the user settings page where you can set your language and
timezone preferences for the dashboard view. This action displays two buttons,
Download OpenStack RC File and Download EC2 Credentials, which let you gener‐
ate files that you can source in your shell to populate the environment variables the
command-line tools require to know where your service endpoints and your authen‐
tication information are. The user you logged in to the dashboard dictates the file‐
name for the openrc file, such as demo-openrc.sh. When logged in as admin, the file
is named admin-openrc.sh.

The generated file looks something like this:

#!/bin/bash

With the addition of Keystone, to use an openstack cloud you should
authenticate against keystone, which returns a **Token** and **Service
Catalog**. The catalog contains the endpoint for all services the
user/tenant has access to--including nova, glance, keystone, swift.
#
NOTE: Using the 2.0 *auth api* does not mean that compute api is 2.0.
We use the 1.1 *compute api*
export OS_AUTH_URL=http://203.0.113.10:5000/v2.0

With the addition of Keystone we have standardized on the term **tenant**
as the entity that owns the resources.
export OS_TENANT_ID=98333aba48e756fa8f629c83a818ad57
export OS_TENANT_NAME="test-project"

In addition to the owning entity (tenant), openstack stores the entity
performing the action as the **user**.

Command-Line Tools | 73

www.it-ebooks.info

http://www.it-ebooks.info/

export OS_USERNAME=demo

With Keystone you pass the keystone password.
echo "Please enter your OpenStack Password: "
read -s OS_PASSWORD_INPUT
export OS_PASSWORD=$OS_PASSWORD_INPUT

This does not save your password in plain text, which is a good
thing. But when you source or run the script, it prompts you for
your password and then stores your response in the environment
variable OS_PASSWORD. It is important to note that this does require
interactivity. It is possible to store a value directly in the script if
you require a noninteractive operation, but you then need to be ex‐
tremely cautious with the security and permissions of this file.

EC2 compatibility credentials can be downloaded by selecting Project, then Access &
Security, then API Access to display the Download EC2 Credentials button. Click the
button to generate a ZIP file with server x509 certificates and a shell script fragment.
Create a new directory in a secure location because these are live credentials contain‐
ing all the authentication information required to access your cloud identity, unlike
the default user-openrc. Extract the ZIP file here. You should have cacert.pem,
cert.pem, ec2rc.sh, and pk.pem. The ec2rc.sh is similar to this:

#!/bin/bash

NOVARC=$(readlink -f "${BASH_SOURCE:-${0}}" 2>/dev/null) ||\
NOVARC=$(python -c 'import os,sys; \
print os.path.abspath(os.path.realpath(sys.argv[1]))' "${BASH_SOURCE:-${0}}")
NOVA_KEY_DIR=${NOVARC%/*}
export EC2_ACCESS_KEY=df7f93ec47e84ef8a347bbb3d598449a
export EC2_SECRET_KEY=ead2fff9f8a344e489956deacd47e818
export EC2_URL=http://203.0.113.10:8773/services/Cloud
export EC2_USER_ID=42 # nova does not use user id, but bundling requires it
export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/pk.pem
export EC2_CERT=${NOVA_KEY_DIR}/cert.pem
export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem
export EUCALYPTUS_CERT=${NOVA_CERT} # euca-bundle-image seems to require this

alias ec2-bundle-image="ec2-bundle-image --cert $EC2_CERT --privatekey \
$EC2_PRIVATE_KEY --user 42 --ec2cert $NOVA_CERT"
alias ec2-upload-bundle="ec2-upload-bundle -a $EC2_ACCESS_KEY -s \
$EC2_SECRET_KEY --url $S3_URL --ec2cert $NOVA_CERT"

To put the EC2 credentials into your environment, source the ec2rc.sh file.

74 | Chapter 8: Lay of the Land

www.it-ebooks.info

http://www.it-ebooks.info/

Inspecting API Calls
The command-line tools can be made to show the OpenStack API calls they make by
passing the --debug flag to them. For example:

nova --debug list

This example shows the HTTP requests from the client and the responses from the
endpoints, which can be helpful in creating custom tools written to the OpenStack
API.

Keyring Support enables you to securely save your OpenStack pass‐
word in an encrypted file.
This feature is disabled by default. To enable it, add the --os-cache
flag or set the environment variable OS_CACHE=1.
Configuring OS_CACHE causes the command-line tool to authenti‐
cate on each and every interaction with the cloud. This can assist
with working around this scenario. However, it increases the time
taken to run commands and also the load on the server.

Using cURL for further inspection
Underlying the use of the command-line tools is the OpenStack API, which is a
RESTful API that runs over HTTP. There may be cases where you want to interact
with the API directly or need to use it because of a suspected bug in one of the CLI
tools. The best way to do this is to use a combination of cURL and another tool, such
as jq, to parse the JSON from the responses.

The first thing you must do is authenticate with the cloud using your credentials to
get an authentication token.

Your credentials are a combination of username, password, and tenant (project). You
can extract these values from the openrc.sh discussed above. The token allows you to
interact with your other service endpoints without needing to reauthenticate for
every request. Tokens are typically good for 24 hours, and when the token expires,
you are alerted with a 401 (Unauthorized) response and you can request another
token.

1. Look at your OpenStack service catalog:
$ curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user", \
 "password":"test-password"}, \
 "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq .

2. Read through the JSON response to get a feel for how the catalog is laid out.

Command-Line Tools | 75

www.it-ebooks.info

http://opsgui.de/NPGeVy
http://opsgui.de/1eLBfQy
http://opsgui.de/NPGdB5
http://www.it-ebooks.info/

To make working with subsequent requests easier, store the token in an environ‐
ment variable:

$ TOKEN=`curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user", \
 "password":"test-password"}, \
 "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq -r .access.token.id`

Now you can refer to your token on the command line as $TOKEN.
3. Pick a service endpoint from your service catalog, such as compute. Try a re‐

quest, for example, listing instances (servers):
$ curl -s \
-H "X-Auth-Token: $TOKEN" \
http://203.0.113.10:8774/v2/98333aba48e756fa8f629c83a818ad57/servers | jq .

To discover how API requests should be structured, read the OpenStack API Refer‐
ence. To chew through the responses using jq, see the jq Manual.

The -s flag used in the cURL commands above are used to prevent the progress
meter from being shown. If you are having trouble running cURL commands, you’ll
want to remove it. Likewise, to help you troubleshoot cURL commands, you can in‐
clude the -v flag to show you the verbose output. There are many more extremely
useful features in cURL; refer to the man page for all the options.

Servers and Services
As an administrator, you have a few ways to discover what your OpenStack cloud
looks like simply by using the OpenStack tools available. This section gives you an
idea of how to get an overview of your cloud, its shape, size, and current state.

First, you can discover what servers belong to your OpenStack cloud by running:

nova-manage service list | sort

The output looks like the following:

Binary Host Zone Status State Updated_At
nova-cert cloud.example.com nova enabled :-) 2013-02-25 19:32:38
nova-compute c01.example.com nova enabled :-) 2013-02-25 19:32:35
nova-compute c02.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c03.example.com nova enabled :-) 2013-02-25 19:32:36
nova-compute c04.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c05.example.com nova enabled :-) 2013-02-25 19:32:41
nova-conductor cloud.example.com nova enabled :-) 2013-02-25 19:32:40
nova-consoleauth cloud.example.com nova enabled :-) 2013-02-25 19:32:36
nova-network cloud.example.com nova enabled :-) 2013-02-25 19:32:32
nova-scheduler cloud.example.com nova enabled :-) 2013-02-25 19:32:33

76 | Chapter 8: Lay of the Land

www.it-ebooks.info

http://opsgui.de/1eLBhrz
http://opsgui.de/1eLBhrz
http://opsgui.de/NPGeoH
http://www.it-ebooks.info/

The output shows that there are five compute nodes and one cloud controller. You see
a smiley face, such as :-), which indicates that the services are up and running. If a
service is no longer available, the :-) symbol changes to XXX. This is an indication
that you should troubleshoot why the service is down.

If you are using cinder, run the following command to see a similar listing:

cinder-manage host list | sort

host zone
c01.example.com nova
c02.example.com nova
c03.example.com nova
c04.example.com nova
c05.example.com nova
cloud.example.com nova

With these two tables, you now have a good overview of what servers and services
make up your cloud.

You can also use the Identity Service (keystone) to see what services are available in
your cloud as well as what endpoints have been configured for the services.

The following command requires you to have your shell environment configured
with the proper administrative variables:

$ keystone catalog

Service: image
+-------------+--+
| Property | Value |
+-------------+--+
adminURL	http://cloud.internal.example.com:9292
internalURL	http://cloud.example.com:9292
publicURL	http://cloud.example.com:9292
region	RegionOne
+-------------+--+

Service: identity
+-------------+--+
| Property | Value |
+-------------+--+
adminURL	http://cloud.internal.example.com:35357/v2.0
internalURL	http://cloud.example.com:5000/v2.0
publicURL	http://cloud.example.com:5000/v2.0
region	RegionOne
+-------------+--+

Command-Line Tools | 77

www.it-ebooks.info

http://www.it-ebooks.info/

The preceding output has been truncated to show only two services. You will see one
service block for each service that your cloud provides. Note how the endpoint do‐
main can be different depending on the endpoint type. Different endpoint domains
per type are not required, but this can be done for different reasons, such as endpoint
privacy or network traffic segregation.

You can find the version of the Compute installation by using the nova-manage
command:

nova-manage version list

Diagnose Your Compute Nodes
You can obtain extra information about virtual machines that are running—their
CPU usage, the memory, the disk I/O or network I/O—per instance, by running the
nova diagnostics command with a server ID:

$ nova diagnostics <serverID>

The output of this command varies depending on the hypervisor because hypervisors
support different attributes. The following demonstrates the difference between the
two most popular hypervisors. Here is example output when the hypervisor is Xen:

+----------------+-----------------+
| Property | Value |
+----------------+-----------------+
cpu0	4.3627
memory	1171088064.0000
memory_target	1171088064.0000
vbd_xvda_read	0.0
vbd_xvda_write	0.0
vif_0_rx	3223.6870
vif_0_tx	0.0
vif_1_rx	104.4955
vif_1_tx	0.0
+----------------+-----------------+

While the command should work with any hypervisor that is controlled through lib‐
virt (e.g., KVM, QEMU, or LXC), it has been tested only with KVM. Here is example
output when the hypervisor is KVM:

78 | Chapter 8: Lay of the Land

www.it-ebooks.info

http://www.it-ebooks.info/

+------------------+------------+
| Property | Value |
+------------------+------------+
cpu0_time	2870000000
memory	524288
vda_errors	-1
vda_read	262144
vda_read_req	112
vda_write	5606400
vda_write_req	376
vnet0_rx	63343
vnet0_rx_drop	0
vnet0_rx_errors	0
vnet0_rx_packets	431
vnet0_tx	4905
vnet0_tx_drop	0
vnet0_tx_errors	0
vnet0_tx_packets	45
+------------------+------------+

Network Inspection
To see which fixed IP networks are configured in your cloud, you can use the nova
command-line client to get the IP ranges:

$ nova network-list
+--------------------------------------+--------+--------------+
| ID | Label | Cidr |
+--------------------------------------+--------+--------------+
| 3df67919-9600-4ea8-952e-2a7be6f70774 | test01 | 10.1.0.0/24 |
| 8283efb2-e53d-46e1-a6bd-bb2bdef9cb9a | test02 | 10.1.1.0/24 |
+--------------------------------------+--------+--------------+

The nova-manage tool can provide some additional details:

nova-manage network list
id IPv4 IPv6 start address DNS1 DNS2 VlanID project uuid
1 10.1.0.0/24 None 10.1.0.3 None None 300 2725bbd beacb3f2
2 10.1.1.0/24 None 10.1.1.3 None None 301 none d0b1a796

This output shows that two networks are configured, each network containing 255
IPs (a /24 subnet). The first network has been assigned to a certain project, while the
second network is still open for assignment. You can assign this network manually;
otherwise, it is automatically assigned when a project launches its first instance.

To find out whether any floating IPs are available in your cloud, run:

nova-manage floating list

2725bb...59f43f 1.2.3.4 None nova vlan20
None 1.2.3.5 48a415...b010ff nova vlan20

Network Inspection | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Here, two floating IPs are available. The first has been allocated to a project, while the
other is unallocated.

Users and Projects
To see a list of projects that have been added to the cloud, run:

$ keystone tenant-list

+-----+----------+---------+
| id | name | enabled |
+-----+----------+---------+
...	jtopjian	True
...	alvaro	True
...	everett	True
...	admin	True
...	services	True
...	jonathan	True
...	lorin	True
...	anne	True
...	rhulsker	True
...	tom	True
...	adam	True
+-----+----------+---------+

To see a list of users, run:

$ keystone user-list

+-----+----------+---------+------------------------------+
| id | name | enabled | email |
+-----+----------+---------+------------------------------+
...	everett	True	everett.towne@backspace.com
...	jonathan	True	jon@sfcu.edu
...	nova	True	nova@localhost
...	rhulsker	True	ryan.hulkster@cyberalbert.ca
...	lorin	True	lorinhoch@nsservices.com
...	alvaro	True	Alvaro.Perry@cyberalbert.ca
...	anne	True	anne.green@backspace.com
...	admin	True	root@localhost
...	cinder	True	cinder@localhost
...	glance	True	glance@localhost
...	jtopjian	True	joe.topjian@cyberalbert.com
...	adam	True	adam@ossmanuals.net
...	tom	True	fafield@univm.edu.au
+-----+----------+---------+------------------------------+

Sometimes a user and a group have a one-to-one mapping. This
happens for standard system accounts, such as cinder, glance, nova,
and swift, or when only one user is part of a group.

80 | Chapter 8: Lay of the Land

www.it-ebooks.info

http://www.it-ebooks.info/

Running Instances
To see a list of running instances, run:

$ nova list --all-tenants

+-----+------------------+--------+---+
| ID | Name | Status | Networks |
+-----+------------------+--------+---+
...	Windows	ACTIVE	novanetwork_1=10.1.1.3, 199.116.232.39
...	cloud controller	ACTIVE	novanetwork_0=10.1.0.6; jtopjian=10.1.2.3
...	compute node 1	ACTIVE	novanetwork_0=10.1.0.4; jtopjian=10.1.2.4
...	devbox	ACTIVE	novanetwork_0=10.1.0.3
...	devstack	ACTIVE	novanetwork_0=10.1.0.5
...	initial	ACTIVE	nova_network=10.1.7.4, 10.1.8.4
...	lorin-head	ACTIVE	nova_network=10.1.7.3, 10.1.8.3
+-----+------------------+--------+---+

Unfortunately, this command does not tell you various details about the running
instances, such as what compute node the instance is running on, what flavor the in‐
stance is, and so on. You can use the following command to view details about indi‐
vidual instances:

$ nova show <uuid>

For example:

nova show 81db556b-8aa5-427d-a95c-2a9a6972f630

+-------------------------------------+-----------------------------------+
| Property | Value |
+-------------------------------------+-----------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-SRV-ATTR:host	c02.example.com
OS-EXT-SRV-ATTR:hypervisor_hostname	c02.example.com
OS-EXT-SRV-ATTR:instance_name	instance-00000029
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
accessIPv4	
accessIPv6	
config_drive	
created	2013-02-13T20:08:36Z
flavor	m1.small (6)
hostId	...
id	...
image	Ubuntu 12.04 cloudimg amd64 (...)
key_name	jtopjian-sandbox
metadata	{}
name	devstack
novanetwork_0 network	10.1.0.5
progress	0
security_groups	[{u'name': u'default'}]

Running Instances | 81

www.it-ebooks.info

http://www.it-ebooks.info/

status	ACTIVE
tenant_id	...
updated	2013-02-13T20:08:59Z
user_id	...
+-------------------------------------+-----------------------------------+

This output shows that an instance named devstack was created from an Ubuntu
12.04 image using a flavor of m1.small and is hosted on the compute node c02.exam
ple.com.

Summary
We hope you have enjoyed this quick tour of your working environment, including
how to interact with your cloud and extract useful information. From here, you can
use the Admin User Guide as your reference for all of the command-line functionality
in your cloud.

82 | Chapter 8: Lay of the Land

www.it-ebooks.info

http://opsgui.de/1eLBkDJ
http://www.it-ebooks.info/

CHAPTER 9

Managing Projects and Users

An OpenStack cloud does not have much value without users. This chapter covers
topics that relate to managing users, projects, and quotas. This chapter describes
users and projects as described by version 2 of the OpenStack Identity API.

While version 3 of the Identity API is available, the client tools do
not yet implement those calls, and most OpenStack clouds are still
implementing Identity API v2.0.

Projects or Tenants?
In OpenStack user interfaces and documentation, a group of users is referred to as a
project or tenant. These terms are interchangeable.

The initial implementation of the OpenStack Compute Service (nova) had its own au‐
thentication system and used the term project. When authentication moved into the
OpenStack Identity Service (keystone) project, it used the term tenant to refer to a
group of users. Because of this legacy, some of the OpenStack tools refer to projects
and some refer to tenants.

This guide uses the term project, unless an example shows inter‐
action with a tool that uses the term tenant.

83

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Projects
Users must be associated with at least one project, though they may belong to many.
Therefore, you should add at least one project before adding users.

Adding Projects
To create a project through the OpenStack dashboard:

1. Log in as an administrative user.
2. Select the Admin tab in the left navigation bar.
3. Under Identity Panel, click Projects.
4. Click the Create Project button.

You are prompted for a project name and an optional, but recommended, descrip‐
tion. Select the checkbox at the bottom of the form to enable this project. By default,
it is enabled, as shown in Figure 9-1.

Figure 9-1. Dashboard’s Create Project form

84 | Chapter 9: Managing Projects and Users

www.it-ebooks.info

http://www.it-ebooks.info/

It is also possible to add project members and adjust the project quotas. We’ll discuss
those actions later, but in practice, it can be quite convenient to deal with all these
operations at one time.

To add a project through the command line, you must use the keystone utility, which
uses tenant in place of project:

keystone tenant-create --name=demo

This command creates a project named “demo.” Optionally, you can add a description
string by appending --description tenant-description, which can be very useful.
You can also create a group in a disabled state by appending --enabled false to the
command. By default, projects are created in an enabled state.

Quotas
To prevent system capacities from being exhausted without notification, you can set
up quotas. Quotas are operational limits. For example, the number of gigabytes al‐
lowed per tenant can be controlled to ensure that a single tenant cannot consume all
of the disk space. Quotas are currently enforced at the tenant (or project) level, rather
than by users.

Because without sensible quotas a single tenant could use up all the
available resources, default quotas are shipped with OpenStack.
You should pay attention to which quota settings make sense for
your hardware capabilities.

Using the command-line interface, you can manage quotas for the OpenStack Com‐
pute Service and the Block Storage Service.

Typically, default values are changed because a tenant requires more than the Open‐
Stack default of 10 volumes per tenant, or more than the OpenStack default of 1 TB
of disk space on a compute node.

To view all tenants, run:
$ keystone tenant-list

+---------------------------------+----------+---------+
| id | name | enabled |
+---------------------------------+----------+---------+
a981642d22c94e159a4a6540f70f9f8	admin	True
934b662357674c7b9f5e4ec6ded4d0e	tenant01	True
7bc1dbfd7d284ec4a856ea1eb82dca8	tenant02	True
9c554aaef7804ba49e1b21cbd97d218	services	True
+---------------------------------+----------+---------+

Quotas | 85

www.it-ebooks.info

http://www.it-ebooks.info/

Set Image Quotas
OpenStack Havana introduced a basic quota feature for the Image service, so you can
now restrict a project’s image storage by total number of bytes. Currently, this quota
is applied cloud-wide, so if you were to set an Image quota limit of 5 GB, then all
projects in your cloud will be able to store only 5 GB of images and snapshots.

To enable this feature, edit the /etc/glance/glance-api.conf file, and under the
[DEFAULT] section, add:

user_storage_quota = <bytes>

For example, to restrict a project’s image storage to 5 GB, do this:

user_storage_quota = 5368709120

In the Icehouse release, there is a configuration option in glance-
api.conf that limits the number of members allowed per image,
called image_member_quota, set to 128 by default. That setting is a
different quota from the storage quota.

Set Compute Service Quotas
As an administrative user, you can update the Compute Service quotas for an existing
tenant, as well as update the quota defaults for a new tenant. See Table 9-1.

Table 9-1. Compute quota descriptions

Quota Description Property name

Fixed IPs Number of fixed IP addresses allowed per tenant. This number must be
equal to or greater than the number of allowed instances.

fixed-ips

Floating IPs Number of floating IP addresses allowed per tenant. floating-ips

Injected file content
bytes

Number of content bytes allowed per injected file. injected-file-

content-bytes

Injected file path bytes Number of bytes allowed per injected file path. injected-file-

path-bytes

Injected files Number of injected files allowed per tenant. injected-files

Instances Number of instances allowed per tenant. instances

Key pairs Number of key pairs allowed per user. key-pairs

Metadata items Number of metadata items allowed per instance. metadata-items

86 | Chapter 9: Managing Projects and Users

www.it-ebooks.info

http://www.it-ebooks.info/

Quota Description Property name

RAM Megabytes of instance RAM allowed per tenant. ram

Security group rules Number of rules per security group. security-group-

rules

Security groups Number of security groups per tenant. security-groups

VCPUs Number of instance cores allowed per tenant. cores

View and update compute quotas for a tenant (project)

As an administrative user, you can use the nova quota-* commands, which are pro‐
vided by the python-novaclient package, to view and update tenant quotas.

To view and update default quota values

1. List all default quotas for all tenants, as follows:
$ nova quota-defaults

For example:
$ nova quota-defaults
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	10
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

2. Update a default value for a new tenant, as follows:
$ nova quota-class-update default key value

For example:
$ nova quota-class-update default instances 15

Quotas | 87

www.it-ebooks.info

http://www.it-ebooks.info/

To view quota values for a tenant (project)

1. Place the tenant ID in a useable variable, as follows:
$ tenant=$(keystone tenant-list | awk '/tenantName/ {print $2}')

2. List the currently set quota values for a tenant, as follows:
$ nova quota-show --tenant $tenant

For example:
$ nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	12
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

To update quota values for a tenant (project)

1. Obtain the tenant ID, as follows:
$ tenant=$(keystone tenant-list | awk '/tenantName/ {print $2}')

2. Update a particular quota value, as follows:
nova quota-update --quotaName quotaValue tenantID

For example:
nova quota-update --floating-ips 20 $tenant
nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	20
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20

88 | Chapter 9: Managing Projects and Users

www.it-ebooks.info

http://www.it-ebooks.info/

fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

To view a list of options for the quota-update command, run:
$ nova help quota-update

Set Object Storage Quotas
Object Storage quotas were introduced in Swift 1.8 (OpenStack Grizzly). There are
currently two categories of quotas for Object Storage:

Container quotas
Limit the total size (in bytes) or number of objects that can be stored in a single
container.

Account quotas
Limit the total size (in bytes) that a user has available in the Object Storage
service.

To take advantage of either container quotas or account quotas, your Object Storage
proxy server must have container_quotas or account_quotas (or both) added to the
[pipeline:main] pipeline. Each quota type also requires its own section in the
proxy-server.conf file:

[pipeline:main]
pipeline = healthcheck [...] container_quotas account_quotas proxy-server

[filter:account_quotas]
use = egg:swift#account_quotas

[filter:container_quotas]
use = egg:swift#container_quotas

To view and update Object Storage quotas, use the swift command provided by the
python-swiftclient package. Any user included in the project can view the quotas
placed on their project. To update Object Storage quotas on a project, you must have
the role of ResellerAdmin in the project that the quota is being applied to.

Quotas | 89

www.it-ebooks.info

http://www.it-ebooks.info/

To view account quotas placed on a project:

$ swift stat

 Account: AUTH_b36ed2d326034beba0a9dd1fb19b70f9
Containers: 0
 Objects: 0
 Bytes: 0
Meta Quota-Bytes: 214748364800
X-Timestamp: 1351050521.29419
Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

To apply or update account quotas on a project:

$ swift post -m quota-bytes:
 <bytes>

For example, to place a 5 GB quota on an account:

$ swift post -m quota-bytes:
 5368709120

To verify the quota, run the swift stat command again:

$ swift stat

 Account: AUTH_b36ed2d326034beba0a9dd1fb19b70f9
Containers: 0
 Objects: 0
 Bytes: 0
Meta Quota-Bytes: 5368709120
X-Timestamp: 1351541410.38328
Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

Set Block Storage Quotas
As an administrative user, you can update the Block Storage Service quotas for a ten‐
ant, as well as update the quota defaults for a new tenant. See Table 9-2.

Table 9-2. Block Storage quota descriptions

Property name Description

gigabytes Number of volume gigabytes allowed per tenant

snapshots Number of Block Storage snapshots allowed per tenant.

volumes Number of Block Storage volumes allowed per tenant

90 | Chapter 9: Managing Projects and Users

www.it-ebooks.info

http://www.it-ebooks.info/

View and update Block Storage quotas for a tenant (project)

As an administrative user, you can use the cinder quota-* commands, which are
provided by the python-cinderclient package, to view and update tenant quotas.

To view and update default Block Storage quota values

1. List all default quotas for all tenants, as follows:
$ cinder quota-defaults

For example:
$ cinder quota-defaults
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

2. To update a default value for a new tenant, update the property in the /etc/
cinder/cinder.conf file.

To view Block Storage quotas for a tenant

1. View quotas for the tenant, as follows:
cinder quota-show tenantName

For example:
cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

To update Compute Service quotas

1. Place the tenant ID in a useable variable, as follows:
$ tenant=$(keystone tenant-list | awk '/tenantName/ {print $2}')

2. Update a particular quota value, as follows:
cinder quota-update --quotaName NewValue tenantID

For example:

Quotas | 91

www.it-ebooks.info

http://www.it-ebooks.info/

cinder quota-update --volumes 15 $tenant
cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	15
+-----------+-------+

User Management
The command-line tools for managing users are inconvenient to use directly. They
require issuing multiple commands to complete a single task, and they use UUIDs
rather than symbolic names for many items. In practice, humans typically do not use
these tools directly. Fortunately, the OpenStack dashboard provides a reasonable in‐
terface to this. In addition, many sites write custom tools for local needs to enforce
local policies and provide levels of self-service to users that aren’t currently available
with packaged tools.

Creating New Users
To create a user, you need the following information:

• Username
• Email address
• Password
• Primary project
• Role

Username and email address are self-explanatory, though your site may have local
conventions you should observe. Setting and changing passwords in the Identity ser‐
vice requires administrative privileges. As of the Folsom release, users cannot change
their own passwords. This is a large driver for creating local custom tools, and must
be kept in mind when assigning and distributing passwords. The primary project is
simply the first project the user is associated with and must exist prior to creating the
user. Role is almost always going to be “member.” Out of the box, OpenStack comes
with two roles defined:

92 | Chapter 9: Managing Projects and Users

www.it-ebooks.info

http://www.it-ebooks.info/

member
A typical user

admin
An administrative super user, which has full permissions across all projects and
should be used with great care

It is possible to define other roles, but doing so is uncommon.

Once you’ve gathered this information, creating the user in the dashboard is just an‐
other web form similar to what we’ve seen before and can be found by clicking the
Users link in the Admin navigation bar and then clicking the Create User button at
the top right.

Modifying users is also done from this Users page. If you have a large number of
users, this page can get quite crowded. The Filter search box at the top of the page can
be used to limit the users listing. A form very similar to the user creation dialog can
be pulled up by selecting Edit from the actions dropdown menu at the end of the line
for the user you are modifying.

Associating Users with Projects
Many sites run with users being associated with only one project. This is a more con‐
servative and simpler choice both for administration and for users. Administratively,
if a user reports a problem with an instance or quota, it is obvious which project this
relates to. Users needn’t worry about what project they are acting in if they are only in
one project. However, note that, by default, any user can affect the resources of any
other user within their project. It is also possible to associate users with multiple
projects if that makes sense for your organization.

Associating existing users with an additional project or removing them from an older
project is done from the Projects page of the dashboard by selecting Modify Users
from the Actions column, as shown in Figure 9-2.

From this view, you can do a number of useful things, as well as a few dangerous
ones.

The first column of this form, named All Users, includes a list of all the users in your
cloud who are not already associated with this project. The second column shows all
the users who are. These lists can be quite long, but they can be limited by typing a
substring of the username you are looking for in the filter field at the top of the
column.

From here, click the + icon to add users to the project. Click the - to remove them.

Associating Users with Projects | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-2. Edit Project Members tab

The dangerous possibility comes with the ability to change member roles. This is the
dropdown list below the username in the Project Members list. In virtually all cases,
this value should be set to Member. This example purposefully shows an administra‐
tive user where this value is admin.

The admin is global, not per project, so granting a user the admin
role in any project gives the user administrative rights across the
whole cloud.

Typical use is to only create administrative users in a single project, by convention the
admin project, which is created by default during cloud setup. If your administrative
users also use the cloud to launch and manage instances, it is strongly recommended
that you use separate user accounts for administrative access and normal operations
and that they be in distinct projects.

Customizing Authorization
The default authorization settings allow administrative users only to create resources
on behalf of a different project. OpenStack handles two kinds of authorization
policies:

94 | Chapter 9: Managing Projects and Users

www.it-ebooks.info

http://www.it-ebooks.info/

Operation based
Policies specify access criteria for specific operations, possibly with fine-grained
control over specific attributes.

Resource based
Whether access to a specific resource might be granted or not according to the
permissions configured for the resource (currently available only for the network
resource). The actual authorization policies enforced in an OpenStack service
vary from deployment to deployment.

The policy engine reads entries from the policy.json file. The actual location of this
file might vary from distribution to distribution: for nova, it is typically in /etc/
nova/policy.json. You can update entries while the system is running, and you do
not have to restart services. Currently, the only way to update such policies is to edit
the policy file.

The OpenStack service’s policy engine matches a policy directly. A rule indicates eval‐
uation of the elements of such policies. For instance, in a compute:create:
[["rule:admin_or_owner"]] statement, the policy is compute:create, and the rule is
admin_or_owner.

Policies are triggered by an OpenStack policy engine whenever one of them matches
an OpenStack API operation or a specific attribute being used in a given operation.
For instance, the engine tests the create:compute policy every time a user sends a
POST /v2/{tenant_id}/servers request to the OpenStack Compute API server. Pol‐
icies can be also related to specific API extensions. For instance, if a user needs an
extension like compute_extension:rescue, the attributes defined by the provider ex‐
tensions trigger the rule test for that operation.

An authorization policy can be composed by one or more rules. If more rules are
specified, evaluation policy is successful if any of the rules evaluates successfully; if an
API operation matches multiple policies, then all the policies must evaluate success‐
fully. Also, authorization rules are recursive. Once a rule is matched, the rule(s) can
be resolved to another rule, until a terminal rule is reached. These are the rules
defined:

Role-based rules
Evaluate successfully if the user submitting the request has the specified role. For
instance, "role:admin" is successful if the user submitting the request is an ad‐
ministrator.

Field-based rules
Evaluate successfully if a field of the resource specified in the current request
matches a specific value. For instance, "field:networks:shared=True" is suc‐
cessful if the attribute shared of the network resource is set to true.

Associating Users with Projects | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Generic rules
Compare an attribute in the resource with an attribute extracted from the user’s
security credentials and evaluates successfully if the comparison is successful. For
instance, "tenant_id:%(tenant_id)s" is successful if the tenant identifier in the
resource is equal to the tenant identifier of the user submitting the request.

Here are snippets of the default nova policy.json file:

{
 "context_is_admin": [["role:admin"]],
 "admin_or_owner": [["is_admin:True"], \
 ["project_id:%(project_id)s"]],
 "default": [["rule:admin_or_owner"]],
 "compute:create": [],
 "compute:create:attach_network": [],
 "compute:create:attach_volume": [],
 "compute:get_all": [],
 "admin_api": [["is_admin:True"]],
 "compute_extension:accounts": [["rule:admin_api"]],
 "compute_extension:admin_actions": [["rule:admin_api"]],
 "compute_extension:admin_actions:pause": [["rule:admin_or_owner"]],
 "compute_extension:admin_actions:unpause": [["rule:admin_or_owner"]],
 ...
 "compute_extension:admin_actions:migrate": [["rule:admin_api"]],
 "compute_extension:aggregates": [["rule:admin_api"]],
 "compute_extension:certificates": [],
 ...
 "compute_extension:flavorextraspecs": [],
 "compute_extension:flavormanage": [["rule:admin_api"]],
 }

Shows a rule that evaluates successfully if the current user is an administrator or
the owner of the resource specified in the request (tenant identifier is equal).

Shows the default policy, which is always evaluated if an API operation does not
match any of the policies in policy.json.

Shows a policy restricting the ability to manipulate flavors to administrators us‐
ing the Admin API only.

In some cases, some operations should be restricted to administrators only. There‐
fore, as a further example, let us consider how this sample policy file could be modi‐
fied in a scenario where we enable users to create their own flavors:

"compute_extension:flavormanage": [],

96 | Chapter 9: Managing Projects and Users

www.it-ebooks.info

http://www.it-ebooks.info/

Users Who Disrupt Other Users
Users on your cloud can disrupt other users, sometimes intentionally and maliciously
and other times by accident. Understanding the situation allows you to make a better
decision on how to handle the disruption.

For example, a group of users have instances that are utilizing a large amount of com‐
pute resources for very compute-intensive tasks. This is driving the load up on com‐
pute nodes and affecting other users. In this situation, review your user use cases. You
may find that high compute scenarios are common, and should then plan for proper
segregation in your cloud, such as host aggregation or regions.

Another example is a user consuming a very large amount of bandwidth. Again, the
key is to understand what the user is doing. If she naturally needs a high amount of
bandwidth, you might have to limit her transmission rate as to not affect other users
or move her to an area with more bandwidth available. On the other hand, maybe her
instance has been hacked and is part of a botnet launching DDOS attacks. Resolution
of this issue is the same as though any other server on your network has been hacked.
Contact the user and give her time to respond. If she doesn’t respond, shut down the
instance.

A final example is if a user is hammering cloud resources repeatedly. Contact the user
and learn what he is trying to do. Maybe he doesn’t understand that what he’s doing is
inappropriate, or maybe there is an issue with the resource he is trying to access that
is causing his requests to queue or lag.

Summary
One key element of systems administration that is often overlooked is that end users
are the reason systems administrators exist. Don’t go the BOFH route and terminate
every user who causes an alert to go off. Work with users to understand what they’re
trying to accomplish and see how your environment can better assist them in achiev‐
ing their goals. Meet your users needs by organizing your users into projects, apply‐
ing policies, managing quotas, and working with them.

Summary | 97

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

User-Facing Operations

This guide is for OpenStack operators and does not seek to be an exhaustive reference
for users, but as an operator, you should have a basic understanding of how to use the
cloud facilities. This chapter looks at OpenStack from a basic user perspective, which
helps you understand your users’ needs and determine, when you get a trouble ticket,
whether it is a user issue or a service issue. The main concepts covered are images,
flavors, security groups, block storage, and instances.

Images
OpenStack images can often be thought of as “virtual machine templates.” Images can
also be standard installation media such as ISO images. Essentially, they contain boot‐
able file systems that are used to launch instances.

Adding Images
Several premade images exist and can easily be imported into the Image Service. A
common image to add is the CirrOS image, which is very small and used for testing
purposes. To add this image, simply do:

$ wget http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-x86_64-disk.img
$ glance image-create --name='cirros image' --is-public=true \
 --container-format=bare --disk-format=qcow2 < cirros-0.3.1-x86_64-disk.img

The glance image-create command provides a large set of options for working with
your image. For example, the min-disk option is useful for images that require root
disks of a certain size (for example, large Windows images). To view these options,
do:

$ glance help image-create

99

www.it-ebooks.info

http://www.it-ebooks.info/

The location option is important to note. It does not copy the entire image into the
Image Service, but references an original location where the image can be found.
Upon launching an instance of that image, the Image Service accesses the image from
the location specified.

The copy-from option copies the image from the location specified into
the /var/lib/glance/images directory. The same thing is done when using the
STDIN redirection with <, as shown in the example.

Run the following command to view the properties of existing images:

$ glance details

Sharing Images Between Projects
In a multitenant cloud environment, users sometimes want to share their personal
images or snapshots with other projects. This can be done on the command line with
the glance tool by the owner of the image.

To share an image or snapshot with another project, do the following:

1. Obtain the UUID of the image:
$ glance image-list

2. Obtain the UUID of the project with which you want to share your image. Un‐
fortunately, nonadmin users are unable to use the keystone command to do this.
The easiest solution is to obtain the UUID either from an administrator of the
cloud or from a user located in the project.

3. Once you have both pieces of information, run the glance command:
$ glance member-create <image-uuid> <project-uuid>

For example:
$ glance member-create 733d1c44-a2ea-414b-aca7-69decf20d810 \
 771ed149ef7e4b2b88665cc1c98f77ca

Project 771ed149ef7e4b2b88665cc1c98f77ca will now have access to image
733d1c44-a2ea-414b-aca7-69decf20d810.

Deleting Images
To delete an image, just execute:

$ glance image-delete <image uuid>

100 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting an image does not affect instances or snapshots that were
based on the image.

Other CLI Options
A full set of options can be found using:

$ glance help

or the OpenStack Image Service CLI Guide.

The Image Service and the Database
The only thing that the Image Service does not store in a database is the image itself.
The Image Service database has two main tables:

• images

• image_properties

Working directly with the database and SQL queries can provide you with custom
lists and reports of images. Technically, you can update properties about images
through the database, although this is not generally recommended.

Example Image Service Database Queries
One interesting example is modifying the table of images and the owner of that im‐
age. This can be easily done if you simply display the unique ID of the owner. This
example goes one step further and displays the readable name of the owner:

mysql> select glance.images.id,
 glance.images.name, keystone.tenant.name, is_public from
 glance.images inner join keystone.tenant on
 glance.images.owner=keystone.tenant.id;

Another example is displaying all properties for a certain image:

mysql> select name, value from
 image_properties where id = <image_id>

Flavors
Virtual hardware templates are called “flavors” in OpenStack, defining sizes for RAM,
disk, number of cores, and so on. The default install provides five flavors.

These are configurable by admin users (the rights may also be delegated to other
users by redefining the access controls for compute_extension:flavormanage

Flavors | 101

www.it-ebooks.info

http://opsgui.de/NPH3Od
http://www.it-ebooks.info/

in /etc/nova/policy.json on the nova-api server). To get the list of available fla‐
vors on your system, run:

$ nova flavor-list
+----+-----------+-----------+------+-----------+\+-------+-\+-------------+
| ID | Name | Memory_MB | Disk | Ephemeral |/| VCPUs | /| extra_specs |
+----+-----------+-----------+------+-----------+\+-------+-\+-------------+
1	m1.tiny	512	1	0	/	1	/	{}
2	m1.small	2048	10	20	\| 1	\| {}		
3	m1.medium	4096	10	40	/	2	/	{}
4	m1.large	8192	10	80	\| 4	\| {}		
5	m1.xlarge	16384	10	160	/	8	/	{}
+----+-----------+-----------+------+-----------+\+-------+-\+-------------+

The nova flavor-create command allows authorized users to create new flavors.
Additional flavor manipulation commands can be shown with the command:

$ nova help | grep flavor

Flavors define a number of parameters, resulting in the user having a choice of what
type of virtual machine to run—just like they would have if they were purchasing a
physical server. Table 10-1 lists the elements that can be set. Note in particular
extra_specs, which can be used to define free-form characteristics, giving a lot of
flexibility beyond just the size of RAM, CPU, and Disk.

Table 10-1. Flavor parameters

Column Description

ID A unique numeric ID.

Name A descriptive name, such as xx.size_name, is conventional but not required, though some third-party tools
may rely on it.

Memory_MB Virtual machine memory in megabytes.

Disk Virtual root disk size in gigabytes. This is an ephemeral disk the base image is copied into. You don’t use it
when you boot from a persistent volume. The “0” size is a special case that uses the native base image size as
the size of the ephemeral root volume.

Ephemeral Specifies the size of a secondary ephemeral data disk. This is an empty, unformatted disk and exists only for
the life of the instance.

Swap Optional swap space allocation for the instance.

VCPUs Number of virtual CPUs presented to the instance.

RXTX_Factor Optional property that allows created servers to have a different bandwidth cap from that defined in the
network they are attached to. This factor is multiplied by the rxtx_base property of the network. Default value
is 1.0 (that is, the same as the attached network).

102 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Column Description

Is_Public Boolean value that indicates whether the flavor is available to all users or private. Private flavors do not get
the current tenant assigned to them. Defaults to True.

extra_specs Additional optional restrictions on which compute nodes the flavor can run on. This is implemented as key-
value pairs that must match against the corresponding key-value pairs on compute nodes. Can be used to
implement things like special resources (such as flavors that can run only on compute nodes with GPU
hardware).

Private Flavors
A user might need a custom flavor that is uniquely tuned for a project she is working
on. For example, the user might require 128 GB of memory. If you create a new flavor
as described above, the user would have access to the custom flavor, but so would all
other tenants in your cloud. Sometimes this sharing isn’t desirable. In this scenario,
allowing all users to have access to a flavor with 128 GB of memory might cause your
cloud to reach full capacity very quickly. To prevent this, you can restrict access to the
custom flavor using the nova command:

$ nova flavor-access-add <flavor-id> <project-id>

To view a flavor’s access list, do the following:

$ nova flavor-access-list <flavor-id>

Best Practices
Once access to a flavor has been restricted, no other projects be‐
sides the ones granted explicit access will be able to see the flavor.
This includes the admin project. Make sure to add the admin
project in addition to the original project.
It’s also helpful to allocate a specific numeric range for custom and
private flavors. On UNIX-based systems, nonsystem accounts usu‐
ally have a UID starting at 500. A similar approach can be taken
with custom flavors. This helps you easily identify which flavors are
custom, private, and public for the entire cloud.

How Do I Modify an Existing Flavor?
The OpenStack dashboard simulates the ability to modify a flavor by deleting an ex‐
isting flavor and creating a new one with the same name.

Flavors | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Security Groups
A common new-user issue with OpenStack is failing to set an appropriate security
group when launching an instance. As a result, the user is unable to contact the in‐
stance on the network.

Security groups are sets of IP filter rules that are applied to an instance’s networking.
They are project specific, and project members can edit the default rules for their
group and add new rules sets. All projects have a “default” security group, which is
applied to instances that have no other security group defined. Unless changed, this
security group denies all incoming traffic.

General Security Groups Configuration
The nova.conf option allow_same_net_traffic (which defaults to true) globally
controls whether the rules apply to hosts that share a network. When set to true,
hosts on the same subnet are not filtered and are allowed to pass all types of traffic
between them. On a flat network, this allows all instances from all projects unfiltered
communication. With VLAN networking, this allows access between instances within
the same project. If allow_same_net_traffic is set to false, security groups are en‐
forced for all connections. In this case, it is possible for projects to simulate al
low_same_net_traffic by configuring their default security group to allow all traffic
from their subnet.

As noted in the previous chapter, the number of rules per security
group is controlled by the quota_security_group_rules, and the
number of allowed security groups per project is controlled by the
quota_security_groups quota.

End-User Configuration of Security Groups
Security groups for the current project can be found on the OpenStack dashboard
under Access & Security. To see details of an existing group, select the edit action for
that security group. Obviously, modifying existing groups can be done from this edit
interface. There is a Create Security Group button on the main Access & Security
page for creating new groups. We discuss the terms used in these fields when we ex‐
plain the command-line equivalents.

From the command line, you can get a list of security groups for the project you’re
acting in using the nova command:

104 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

$ nova secgroup-list
+---------+-------------+
| Name | Description |
+---------+-------------+
| default | default |
| open | all ports |
+---------+-------------+

To view the details of the “open” security group:

$ nova secgroup-list-rules open
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
icmp	-1	255	0.0.0.0/0	
tcp	1	65535	0.0.0.0/0	
udp	1	65535	0.0.0.0/0	
+-------------+-----------+---------+-----------+--------------+

These rules are all “allow” type rules, as the default is deny. The first column is the IP
protocol (one of icmp, tcp, or udp), and the second and third columns specify the af‐
fected port range. The fourth column specifies the IP range in CIDR format. This ex‐
ample shows the full port range for all protocols allowed from all IPs.

When adding a new security group, you should pick a descriptive but brief name.
This name shows up in brief descriptions of the instances that use it where the longer
description field often does not. Seeing that an instance is using security group http
is much easier to understand than bobs_group or secgrp1.

As an example, let’s create a security group that allows web traffic anywhere on the
Internet. We’ll call this group global_http, which is clear and reasonably concise, en‐
capsulating what is allowed and from where. From the command line, do:

$ nova secgroup-create \
 global_http "allow web traffic from the Internet"
+-------------+-------------------------------------+
| Name | Description |
+-------------+-------------------------------------+
| global_http | allow web traffic from the Internet |
+-------------+-------------------------------------+

This creates the empty security group. To make it do what we want, we need to add
some rules:

$ nova secgroup-add-rule <secgroup> <ip-proto> <from-port> <to-port> <cidr>
$ nova secgroup-add-rule global_http tcp 80 80 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Security Groups | 105

www.it-ebooks.info

http://www.it-ebooks.info/

Note that the arguments are positional, and the from-port and to-port arguments
specify the allowed local port range connections. These arguments are not indicating
source and destination ports of the connection. More complex rule sets can be built
up through multiple invocations of nova secgroup-add-rule. For example, if you
want to pass both http and https traffic, do this:

$ nova secgroup-add-rule global_http tcp 443 443 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Despite only outputting the newly added rule, this operation is additive:

$ nova secgroup-list-rules global_http
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

The inverse operation is called secgroup-delete-rule, using the same format.
Whole security groups can be removed with secgroup-delete.

To create security group rules for a cluster of instances, you want to use
SourceGroups.

SourceGroups are a special dynamic way of defining the CIDR of allowed sources.
The user specifies a SourceGroup (security group name) and then all the users’ other
instances using the specified SourceGroup are selected dynamically. This dynamic se‐
lection alleviates the need for individual rules to allow each new member of the
cluster.

The code is structured like this: nova secgroup-add-group-rule <secgroup>

<source-group> <ip-proto> <from-port> <to-port>. An example usage is shown
here:

$ nova secgroup-add-group-rule cluster global-http tcp 22 22

The “cluster” rule allows SSH access from any other instance that uses the global-
http group.

Block Storage
OpenStack volumes are persistent block-storage devices that may be attached and de‐
tached from instances, but they can be attached to only one instance at a time. Similar
to an external hard drive, they do not provide shared storage in the way a network file

106 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

system or object store does. It is left to the operating system in the instance to put a
file system on the block device and mount it, or not.

As with other removable disk technology, it is important that the operating system is
not trying to make use of the disk before removing it. On Linux instances, this typi‐
cally involves unmounting any file systems mounted from the volume. The Open‐
Stack volume service cannot tell whether it is safe to remove volumes from an in‐
stance, so it does what it is told. If a user tells the volume service to detach a volume
from an instance while it is being written to, you can expect some level of file system
corruption as well as faults from whatever process within the instance was using the
device.

There is nothing OpenStack-specific in being aware of the steps needed to access
block devices from within the instance operating system, potentially formatting them
for first use and being cautious when removing them. What is specific is how to cre‐
ate new volumes and attach and detach them from instances. These operations can all
be done from the Volumes page of the dashboard or by using the cinder command-
line client.

To add new volumes, you need only a name and a volume size in gigabytes. Either
put these into the create volume web form or use the command line:

$ cinder create --display-name test-volume 10

This creates a 10 GB volume named test-volume. To list existing volumes and the
instances they are connected to, if any:

$ cinder list
+------------+---------+--------------------+------+-------------+-------------+
| ID | Status | Display Name | Size | Volume Type | Attached to |
+------------+---------+--------------------+------+-------------+-------------+
| 0821...19f | active | test-volume | 10 | None | |
+------------+---------+--------------------+------+-------------+-------------+

OpenStack Block Storage also allows for creating snapshots of volumes. Remember
that this is a block-level snapshot that is crash consistent, so it is best if the volume is
not connected to an instance when the snapshot is taken and second best if the vol‐
ume is not in use on the instance it is attached to. If the volume is under heavy use,
the snapshot may have an inconsistent file system. In fact, by default, the volume ser‐
vice does not take a snapshot of a volume that is attached to an image, though it can
be forced to. To take a volume snapshot, either select Create Snapshot from the ac‐
tions column next to the volume name on the dashboard volume page, or run this
from the command line:

usage: cinder snapshot-create [--force <True|False>]
[--display-name <display-name>]
[--display-description <display-description>]
<volume-id>
Add a new snapshot.

Block Storage | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Positional arguments: <volume-id> ID of the volume to snapshot
Optional arguments: --force <True|False> Optional flag to indicate whether to
 snapshot a volume even if its
 attached to an instance.
 (Default=False)
--display-name <display-name> Optional snapshot name.
 (Default=None)
--display-description <display-description>
Optional snapshot description. (Default=None)

Block Storage Creation Failures
If a user tries to create a volume and the volume immediately goes into an error state,
the best way to troubleshoot is to grep the cinder log files for the volume’s UUID.
First try the log files on the cloud controller, and then try the storage node where the
volume was attempted to be created:

grep 903b85d0-bacc-4855-a261-10843fc2d65b /var/log/cinder/*.log

Instances
Instances are the running virtual machines within an OpenStack cloud. This section
deals with how to work with them and their underlying images, their network prop‐
erties, and how they are represented in the database.

Starting Instances
To launch an instance, you need to select an image, a flavor, and a name. The name
needn’t be unique, but your life will be simpler if it is because many tools will use the
name in place of the UUID so long as the name is unique. You can start an instance
from the dashboard from the Launch Instance button on the Instances page or by se‐
lecting the Launch action next to an image or snapshot on the Images & Snapshots
page.

On the command line, do this:

$ nova boot --flavor <flavor> --image <image> <name>

There are a number of optional items that can be specified. You should read the rest
of this section before trying to start an instance, but this is the base command that
later details are layered upon.

To delete instances from the dashboard, select the Terminate instance action next to
the instance on the Instances page. From the command line, do this:

$ nova delete <instance-uuid>

It is important to note that powering off an instance does not terminate it in the
OpenStack sense.

108 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Instance Boot Failures
If an instance fails to start and immediately moves to an error state, there are a few
different ways to track down what has gone wrong. Some of these can be done with
normal user access, while others require access to your log server or compute nodes.

The simplest reasons for nodes to fail to launch are quota violations or the scheduler
being unable to find a suitable compute node on which to run the instance. In these
cases, the error is apparent when you run a nova show on the faulted instance:

$ nova show test-instance

+------------------------+---\
| Property | Value /
+------------------------+---\
| OS-DCF:diskConfig | MANUAL /
| OS-EXT-STS:power_state | 0 \
| OS-EXT-STS:task_state | None /
| OS-EXT-STS:vm_state | error \
| accessIPv4 | /
| accessIPv6 | \
| config_drive | /
| created | 2013-03-01T19:28:24Z \
| fault | {u'message': u'NoValidHost', u'code': 500, u'created/
| flavor | xxl.super (11) \
| hostId | /
| id | 940f3b2f-bd74-45ad-bee7-eb0a7318aa84 \
| image | quantal-test (65b4f432-7375-42b6-a9b8-7f654a1e676e) /
| key_name | None \
| metadata | {} /
| name | test-instance \
| security_groups | [{u'name': u'default'}] /
| status | ERROR \
| tenant_id | 98333a1a28e746fa8c629c83a818ad57 /
| updated | 2013-03-01T19:28:26Z \
| user_id | a1ef823458d24a68955fec6f3d390019 /
+------------------------+---\

In this case, looking at the fault message shows NoValidHost, indicating that the
scheduler was unable to match the instance requirements.

If nova show does not sufficiently explain the failure, searching for the instance
UUID in the nova-compute.log on the compute node it was scheduled on or the
nova-scheduler.log on your scheduler hosts is a good place to start looking for
lower-level problems.

Using nova show as an admin user will show the compute node the instance was
scheduled on as hostId. If the instance failed during scheduling, this field is blank.

Instances | 109

www.it-ebooks.info

http://www.it-ebooks.info/

Using Instance-Specific Data
There are two main types of instance-specific data: metadata and user data.

Instance metadata
For Compute, instance metadata is a collection of key-value pairs associated with an
instance. Compute reads and writes to these key-value pairs any time during the in‐
stance lifetime, from inside and outside the instance, when the end user uses the
Compute API to do so. However, you cannot query the instance-associated key-value
pairs with the metadata service that is compatible with the Amazon EC2 metadata
service.

For an example of instance metadata, users can generate and register SSH keys using
the nova command:

$ nova keypair-add mykey > mykey.pem

This creates a key named mykey, which you can associate with instances. The file my
key.pem is the private key, which should be saved to a secure location because it al‐
lows root access to instances the mykey key is associated with.

Use this command to register an existing key with OpenStack:

$ nova keypair-add --pub-key mykey.pub mykey

You must have the matching private key to access instances associ‐
ated with this key.

To associate a key with an instance on boot, add --key_name mykey to your com‐
mand line. For example:

$ nova boot --image ubuntu-cloudimage --flavor 2 --key_name mykey myimage

When booting a server, you can also add arbitrary metadata so that you can more
easily identify it among other running instances. Use the --meta option with a key-
value pair, where you can make up the string for both the key and the value. For ex‐
ample, you could add a description and also the creator of the server:

$ nova boot --image=test-image --flavor=1 \
 --meta description='Small test image' smallimage

When viewing the server information, you can see the metadata included on the
metadata line:

110 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

$ nova show smallimage
+------------------------+---+
| Property | Value |
+------------------------+---+
OS-DCF:diskConfig	MANUAL
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
accessIPv4	
accessIPv6	
config_drive	
created	2012-05-16T20:48:23Z
flavor	m1.small
hostId	de0...487
id	8ec...f915
image	natty-image
key_name	
metadata	{u'description': u'Small test image'}
name	smallimage
private network	172.16.101.11
progress	0
public network	10.4.113.11
status	ACTIVE
tenant_id	e83...482
updated	2012-05-16T20:48:35Z
user_id	de3...0a9
+------------------------+---+

Instance user data

The user-data key is a special key in the metadata service that holds a file that cloud-
aware applications within the guest instance can access. For example, cloudinit is an
open source package from Ubuntu, but available in most distributions, that handles
early initialization of a cloud instance that makes use of this user data.

This user data can be put in a file on your local system and then passed in at instance
creation with the flag --user-data <user-data-file>. For example:

$ nova boot --image ubuntu-cloudimage --flavor 1 --user-data mydata.file

To understand the difference between user data and metadata, realize that user data is
created before an instance is started. User data is accessible from within the instance
when it is running. User data can be used to store configuration, a script, or anything
the tenant wants.

File injection
Arbitrary local files can also be placed into the instance file system at creation time by
using the --file <dst-path=src-path> option. You may store up to five files.

Instances | 111

www.it-ebooks.info

http://opsgui.de/1eLCtLs
http://www.it-ebooks.info/

For example, let’s say you have a special authorized_keys file named special_author‐
ized_keysfile that for some reason you want to put on the instance instead of using
the regular SSH key injection. In this case, you can use the following command:

$ nova boot --image ubuntu-cloudimage --flavor 1 \
 --file /root/.ssh/authorized_keys=special_authorized_keysfile

Associating Security Groups
Security groups, as discussed earlier, are typically required to allow network traffic to
an instance, unless the default security group for a project has been modified to be
more permissive.

Adding security groups is typically done on instance boot. When launching from the
dashboard, you do this on the Access & Security tab of the Launch Instance dialog.
When launching from the command line, append --security-groups with a
comma-separated list of security groups.

It is also possible to add and remove security groups when an instance is running.
Currently this is only available through the command-line tools. Here is an example:

$ nova add-secgroup <server> <securitygroup>

$ nova remove-secgroup <server> <securitygroup>

Floating IPs
Where floating IPs are configured in a deployment, each project will have a limited
number of floating IPs controlled by a quota. However, these need to be allocated to
the project from the central pool prior to their use—usually by the administrator of
the project. To allocate a floating IP to a project, use the Allocate IP to Project button
on the Access & Security page of the dashboard. The command line can also be used:

$ nova floating-ip-create

Once allocated, a floating IP can be assigned to running instances from the dash‐
board either by selecting Associate Floating IP from the actions drop-down next to
the IP on the Access & Security page or by making this selection next to the instance
you want to associate it with on the Instances page. The inverse action, Dissociate
Floating IP, is available only from the Access & Security page and not from the In‐
stances page.

To associate or disassociate a floating IP with a server from the command line, use the
following commands:

$ nova add-floating-ip <server> <address>

$ nova remove-floating-ip <server> <address>

112 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

Attaching Block Storage
You can attach block storage to instances from the dashboard on the Volumes page.
Click the Edit Attachments action next to the volume you want to attach.

To perform this action from command line, run the following command:

$ nova volume-attach <server> <volume> <device>

You can also specify block device mapping at instance boot time through the nova
command-line client with this option set:

--block-device-mapping <dev-name=mapping>

The block device mapping format is <dev-name>=<id>:<type>:<size(GB)>:

<delete-on-terminate>, where:

dev-name
A device name where the volume is attached in the system at /dev/dev_name

id
The ID of the volume to boot from, as shown in the output of nova volume-list

type
Either snap, which means that the volume was created from a snapshot, or any‐
thing other than snap (a blank string is valid). In the preceding example, the vol‐
ume was not created from a snapshot, so we leave this field blank in our follow‐
ing example.

size (GB)
The size of the volume in gigabytes. It is safe to leave this blank and have the
Compute Service infer the size.

delete-on-terminate
A boolean to indicate whether the volume should be deleted when the instance is
terminated. True can be specified as True or 1. False can be specified as False or
0.

The following command will boot a new instance and attach a volume at the same
time. The volume of ID 13 will be attached as /dev/vdc. It is not a snapshot, does not
specify a size, and will not be deleted when the instance is terminated:

$ nova boot --image 4042220e-4f5e-4398-9054-39fbd75a5dd7 \
 --flavor 2 --key-name mykey --block-device-mapping vdc=13:::0 \
 boot-with-vol-test

If you have previously prepared block storage with a bootable file system image, it is
even possible to boot from persistent block storage. The following command boots an

Attaching Block Storage | 113

www.it-ebooks.info

http://www.it-ebooks.info/

image from the specified volume. It is similar to the previous command, but the im‐
age is omitted and the volume is now attached as /dev/vda:

$ nova boot --flavor 2 --key-name mykey \
 --block-device-mapping vda=13:::0 boot-from-vol-test

Read more detailed instructions for launching an instance from a bootable volume in
the OpenStack End User Guide.

To boot normally from an image and attach block storage, map to a device other than
vda. You can find instructions for launching an instance and attaching a volume to
the instance and for copying the image to the attached volume in the OpenStack End
User Guide.

Taking Snapshots
The OpenStack snapshot mechanism allows you to create new images from running
instances. This is very convenient for upgrading base images or for taking a published
image and customizing it for local use. To snapshot a running instance to an image
using the CLI, do this:

$ nova image-create <instance name or uuid> <name of new image>

The dashboard interface for snapshots can be confusing because the Images & Snap‐
shots page splits content up into several areas:

• Images
• Instance snapshots
• Volume snapshots

However, an instance snapshot is an image. The only difference between an image
that you upload directly to the Image Service and an image that you create by snap‐
shot is that an image created by snapshot has additional properties in the glance data‐
base. These properties are found in the image_properties table and include:

Name Value

image_type snapshot

instance_uuid <uuid of instance that was snapshotted>

base_image_ref <uuid of original image of instance that was snapshotted>

image_location snapshot

114 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://opsgui.de/NPH30v
http://opsgui.de/1eLCwHb
http://opsgui.de/1eLCwHb
http://www.it-ebooks.info/

Live Snapshots
Live snapshots is a feature that allows users to snapshot the running virtual machines
without pausing them. These snapshots are simply disk-only snapshots. Snapshotting
an instance can now be performed with no downtime (assuming QEMU 1.3+ and
libvirt 1.0+ are used).

Ensuring Snapshots Are Consistent
The following section is from Sébastien Han’s “OpenStack: Perform Consistent Snap‐
shots” blog entry.

A snapshot captures the state of the file system, but not the state of the memory.
Therefore, to ensure your snapshot contains the data that you want, before your snap‐
shot you need to ensure that:

• Running programs have written their contents to disk
• The file system does not have any “dirty” buffers: where programs have issued the

command to write to disk, but the operating system has not yet done the write

To ensure that important services have written their contents to disk (such as databa‐
ses), we recommend that you read the documentation for those applications to deter‐
mine what commands to issue to have them sync their contents to disk. If you are
unsure how to do this, the safest approach is to simply stop these running services
normally.

To deal with the “dirty” buffer issue, we recommend using the sync command before
snapshotting:

sync

Running sync writes dirty buffers (buffered blocks that have been modified but not
written yet to the disk block) to disk.

Just running sync is not enough to ensure that the file system is consistent. We rec‐
ommend that you use the fsfreeze tool, which halts new access to the file system,
and create a stable image on disk that is suitable for snapshotting. The fsfreeze tool
supports several file systems, including ext3, ext4, and XFS. If your virtual machine
instance is running on Ubuntu, install the util-linux package to get fsfreeze:

apt-get install util-linux

If your operating system doesn’t have a version of fsfreeze available, you can use
xfs_freeze instead, which is available on Ubuntu in the xfsprogs package. Despite
the “xfs” in the name, xfs_freeze also works on ext3 and ext4 if you are using a Linux
kernel version 2.6.29 or greater, since it works at the virtual file system (VFS) level

Taking Snapshots | 115

www.it-ebooks.info

http://opsgui.de/NPH5Wn
http://opsgui.de/NPH5Wn
http://www.it-ebooks.info/

starting at 2.6.29. The xfs_freeze version supports the same command-line arguments
as fsfreeze.

Consider the example where you want to take a snapshot of a persistent block storage
volume, detected by the guest operating system as /dev/vdb and mounted on /mnt.
The fsfreeze command accepts two arguments:

-f
Freeze the system

-u
Thaw (unfreeze) the system

To freeze the volume in preparation for snapshotting, you would do the following, as
root, inside the instance:

fsfreeze -f /mnt

You must mount the file system before you run the fsfreeze command.

When the fsfreeze -f command is issued, all ongoing transactions in the file system
are allowed to complete, new write system calls are halted, and other calls that modify
the file system are halted. Most importantly, all dirty data, metadata, and log informa‐
tion are written to disk.

Once the volume has been frozen, do not attempt to read from or write to the vol‐
ume, as these operations hang. The operating system stops every I/O operation and
any I/O attempts are delayed until the file system has been unfrozen.

Once you have issued the fsfreeze command, it is safe to perform the snapshot. For
example, if your instance was named mon-instance and you wanted to snapshot it to
an image named mon-snapshot, you could now run the following:

$ nova image-create mon-instance mon-snapshot

When the snapshot is done, you can thaw the file system with the following com‐
mand, as root, inside of the instance:

fsfreeze -u /mnt

If you want to back up the root file system, you can’t simply run the preceding com‐
mand because it will freeze the prompt. Instead, run the following one-liner, as root,
inside the instance:

fsfreeze -f / && sleep 30 && fsfreeze -u /

Instances in the Database
While instance information is stored in a number of database tables, the table you
most likely need to look at in relation to user instances is the instances table.

116 | Chapter 10: User-Facing Operations

www.it-ebooks.info

http://www.it-ebooks.info/

The instances table carries most of the information related to both running and de‐
leted instances. It has a bewildering array of fields; for an exhaustive list, look at the
database. These are the most useful fields for operators looking to form queries:

• The deleted field is set to 1 if the instance has been deleted and NULL if it has not
been deleted. This field is important for excluding deleted instances from your
queries.

• The uuid field is the UUID of the instance and is used throughout other tables in
the database as a foreign key. This ID is also reported in logs, the dashboard, and
command-line tools to uniquely identify an instance.

• A collection of foreign keys are available to find relations to the instance. The
most useful of these—user_id and project_id—are the UUIDs of the user who
launched the instance and the project it was launched in.

• The host field tells which compute node is hosting the instance.
• The hostname field holds the name of the instance when it is launched. The

display-name is initially the same as hostname but can be reset using the nova
rename command.

A number of time-related fields are useful for tracking when state changes happened
on an instance:

• created_at

• updated_at

• deleted_at

• scheduled_at

• launched_at

• terminated_at

Good Luck!
This section was intended as a brief introduction to some of the most useful of many
OpenStack commands. For an exhaustive list, please refer to the Admin User Guide,
and for additional hints and tips, see the Cloud Admin Guide. We hope your users
remain happy and recognize your hard work! (For more hard work, turn the page to
the next chapter, where we discuss the system-facing operations: maintenance, fail‐
ures and debugging.)

Good Luck! | 117

www.it-ebooks.info

http://opsgui.de/1eLBkDJ
http://opsgui.de/1eLBL0N
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Maintenance, Failures, and Debugging

Downtime, whether planned or unscheduled, is a certainty when running a cloud.
This chapter aims to provide useful information for dealing proactively, or reactively,
with these occurrences.

Cloud Controller and Storage Proxy Failures and
Maintenance
The cloud controller and storage proxy are very similar to each other when it comes
to expected and unexpected downtime. One of each server type typically runs in the
cloud, which makes them very noticeable when they are not running.

For the cloud controller, the good news is if your cloud is using the FlatDHCP multi-
host HA network mode, existing instances and volumes continue to operate while the
cloud controller is offline. For the storage proxy, however, no storage traffic is possi‐
ble until it is back up and running.

Planned Maintenance
One way to plan for cloud controller or storage proxy maintenance is to simply do it
off-hours, such as at 1 a.m. or 2 a.m. This strategy affects fewer users. If your cloud
controller or storage proxy is too important to have unavailable at any point in time,
you must look into high-availability options.

Rebooting a Cloud Controller or Storage Proxy
All in all, just issue the “reboot” command. The operating system cleanly shuts down
services and then automatically reboots. If you want to be very thorough, run your
backup jobs just before you reboot.

119

www.it-ebooks.info

http://www.it-ebooks.info/

After a Cloud Controller or Storage Proxy Reboots
After a cloud controller reboots, ensure that all required services were successfully
started. The following commands use ps and grep to determine if nova, glance, and
keystone are currently running:

ps aux | grep nova-
ps aux | grep glance-
ps aux | grep keystone
ps aux | grep cinder

Also check that all services are functioning. The following set of commands sources
the openrc file, then runs some basic glance, nova, and keystone commands. If the
commands work as expected, you can be confident that those services are in working
condition:

source openrc
glance index
nova list
keystone tenant-list

For the storage proxy, ensure that the Object Storage service has resumed:

ps aux | grep swift

Also check that it is functioning:

swift stat

Total Cloud Controller Failure
The cloud controller could completely fail if, for example, its motherboard goes bad.
Users will immediately notice the loss of a cloud controller since it provides core
functionality to your cloud environment. If your infrastructure monitoring does not
alert you that your cloud controller has failed, your users definitely will. Unfortunate‐
ly, this is a rough situation. The cloud controller is an integral part of your cloud. If
you have only one controller, you will have many missing services if it goes down.

To avoid this situation, create a highly available cloud controller cluster. This is out‐
side the scope of this document, but you can read more in the draft OpenStack High
Availability Guide.

The next best approach is to use a configuration-management tool, such as Puppet, to
automatically build a cloud controller. This should not take more than 15 minutes if
you have a spare server available. After the controller rebuilds, restore any backups
taken (see Chapter 14).

Also, in practice, the nova-compute services on the compute nodes do not always re‐
connect cleanly to rabbitmq hosted on the controller when it comes back up after a
long reboot; a restart on the nova services on the compute nodes is required.

120 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://opsgui.de/NPGlAo
http://opsgui.de/NPGlAo
http://www.it-ebooks.info/

Compute Node Failures and Maintenance
Sometimes a compute node either crashes unexpectedly or requires a reboot for
maintenance reasons.

Planned Maintenance
If you need to reboot a compute node due to planned maintenance (such as a soft‐
ware or hardware upgrade), first ensure that all hosted instances have been moved off
the node. If your cloud is utilizing shared storage, use the nova live-migration
command. First, get a list of instances that need to be moved:

nova list --host c01.example.com --all-tenants

Next, migrate them one by one:

nova live-migration <uuid> c02.example.com

If you are not using shared storage, you can use the --block-migrate option:

nova live-migration --block-migrate <uuid> c02.example.com

After you have migrated all instances, ensure that the nova-compute service has
stopped:

stop nova-compute

If you use a configuration-management system, such as Puppet, that ensures the
nova-compute service is always running, you can temporarily move the init files:

mkdir /root/tmp
mv /etc/init/nova-compute.conf /root/tmp
mv /etc/init.d/nova-compute /root/tmp

Next, shut down your compute node, perform your maintenance, and turn the node
back on. You can reenable the nova-compute service by undoing the previous com‐
mands:

mv /root/tmp/nova-compute.conf /etc/init
mv /root/tmp/nova-compute /etc/init.d/

Then start the nova-compute service:

start nova-compute

You can now optionally migrate the instances back to their original compute node.

After a Compute Node Reboots
When you reboot a compute node, first verify that it booted successfully. This in‐
cludes ensuring that the nova-compute service is running:

Compute Node Failures and Maintenance | 121

www.it-ebooks.info

http://www.it-ebooks.info/

ps aux | grep nova-compute
status nova-compute

Also ensure that it has successfully connected to the AMQP server:

grep AMQP /var/log/nova/nova-compute
2013-02-26 09:51:31 12427 INFO nova.openstack.common.rpc.common [-] Connected
to AMQP server on 199.116.232.36:5672

After the compute node is successfully running, you must deal with the instances that
are hosted on that compute node because none of them are running. Depending on
your SLA with your users or customers, you might have to start each instance and
ensure that they start correctly.

Instances
You can create a list of instances that are hosted on the compute node by performing
the following command:

nova list --host c01.example.com --all-tenants

After you have the list, you can use the nova command to start each instance:

nova reboot <uuid>

Any time an instance shuts down unexpectedly, it might have prob‐
lems on boot. For example, the instance might require an fsck on
the root partition. If this happens, the user can use the dashboard
VNC console to fix this.

If an instance does not boot, meaning virsh list never shows the instance as even
attempting to boot, do the following on the compute node:

tail -f /var/log/nova/nova-compute.log

Try executing the nova reboot command again. You should see an error message
about why the instance was not able to boot

In most cases, the error is the result of something in libvirt’s XML file (/etc/
libvirt/qemu/instance-xxxxxxxx.xml) that no longer exists. You can enforce re-
creation of the XML file as well as rebooting the instance by running the following
command:

nova reboot --hard <uuid>

Inspecting and Recovering Data from Failed Instances
In some scenarios, instances are running but are inaccessible through SSH and do not
respond to any command. The VNC console could be displaying a boot failure or

122 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

kernel panic error messages. This could be an indication of file system corruption on
the VM itself. If you need to recover files or inspect the content of the instance,
qemu-nbd can be used to mount the disk.

If you access or view the user’s content and data, get approval first!

To access the instance’s disk (/var/lib/nova/instances/instance-xxxxxx/disk),
use the following steps:

1. Suspend the instance using the virsh command.
2. Connect the qemu-nbd device to the disk.
3. Mount the qemu-nbd device.
4. Unmount the device after inspecting.
5. Disconnect the qemu-nbd device.
6. Resume the instance.

If you do not follow steps 4 through 6, OpenStack Compute cannot manage the in‐
stance any longer. It fails to respond to any command issued by OpenStack Compute,
and it is marked as shut down.

Once you mount the disk file, you should be able to access it and treat it as a collec‐
tion of normal directories with files and a directory structure. However, we do not
recommend that you edit or touch any files because this could change the access con‐
trol lists (ACLs) that are used to determine which accounts can perform what opera‐
tions on files and directories. Changing ACLs can make the instance unbootable if it
is not already.

1. Suspend the instance using the virsh command, taking note of the internal ID:
virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a running

virsh suspend 30
Domain 30 suspended

2. Connect the qemu-nbd device to the disk:

Compute Node Failures and Maintenance | 123

www.it-ebooks.info

http://www.it-ebooks.info/

cd /var/lib/nova/instances/instance-0000274a
ls -lh
total 33M
-rw-rw---- 1 libvirt-qemu kvm 6.3K Oct 15 11:31 console.log
-rw-r--r-- 1 libvirt-qemu kvm 33M Oct 15 22:06 disk
-rw-r--r-- 1 libvirt-qemu kvm 384K Oct 15 22:06 disk.local
-rw-rw-r-- 1 nova nova 1.7K Oct 15 11:30 libvirt.xml
qemu-nbd -c /dev/nbd0 `pwd`/disk

3. Mount the qemu-nbd device.
The qemu-nbd device tries to export the instance disk’s different partitions as
separate devices. For example, if vda is the disk and vda1 is the root partition,
qemu-nbd exports the device as /dev/nbd0 and /dev/nbd0p1, respectively:

mount /dev/nbd0p1 /mnt/

You can now access the contents of /mnt, which correspond to the first partition
of the instance’s disk.
To examine the secondary or ephemeral disk, use an alternate mount point if you
want both primary and secondary drives mounted at the same time:

umount /mnt
qemu-nbd -c /dev/nbd1 `pwd`/disk.local
mount /dev/nbd1 /mnt/

ls -lh /mnt/
total 76K
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 bin -> usr/bin
dr-xr-xr-x. 4 root root 4.0K Oct 15 01:07 boot
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 dev
drwxr-xr-x. 70 root root 4.0K Oct 15 11:31 etc
drwxr-xr-x. 3 root root 4.0K Oct 15 01:07 home
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Oct 15 00:44 lib64 -> usr/lib64
drwx------. 2 root root 16K Oct 15 00:42 lost+found
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 media
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 mnt
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 opt
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 proc
dr-xr-x---. 3 root root 4.0K Oct 15 21:56 root
drwxr-xr-x. 14 root root 4.0K Oct 15 01:07 run
lrwxrwxrwx. 1 root root 8 Oct 15 00:44 sbin -> usr/sbin
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 srv
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 sys
drwxrwxrwt. 9 root root 4.0K Oct 15 16:29 tmp
drwxr-xr-x. 13 root root 4.0K Oct 15 00:44 usr
drwxr-xr-x. 17 root root 4.0K Oct 15 00:44 var

4. Once you have completed the inspection, unmount the mount point and release
the qemu-nbd device:

124 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

umount /mnt
qemu-nbd -d /dev/nbd0
/dev/nbd0 disconnected

5. Resume the instance using virsh:
virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a paused

virsh resume 30
Domain 30 resumed

Volumes
If the affected instances also had attached volumes, first generate a list of instance and
volume UUIDs:

mysql> select nova.instances.uuid as instance_uuid,
cinder.volumes.id as volume_uuid, cinder.volumes.status,
cinder.volumes.attach_status, cinder.volumes.mountpoint,
cinder.volumes.display_name from cinder.volumes
inner join nova.instances on cinder.volumes.instance_uuid=nova.instances.uuid
 where nova.instances.host = 'c01.example.com';

You should see a result similar to the following:

+--------------+------------+-------+--------------+-----------+--------------+
|instance_uuid |volume_uuid |status |attach_status |mountpoint | display_name |
+--------------+------------+-------+--------------+-----------+--------------+
|9b969a05 |1f0fbf36 |in-use |attached |/dev/vdc | test |
+--------------+------------+-------+--------------+-----------+--------------+
1 row in set (0.00 sec)

Next, manually detach and reattach the volumes, where X is the proper mount point:

nova volume-detach <instance_uuid> <volume_uuid>
nova volume-attach <instance_uuid> <volume_uuid> /dev/vdX

Be sure that the instance has successfully booted and is at a login screen before doing
the above.

Total Compute Node Failure
Compute nodes can fail the same way a cloud controller can fail. A motherboard fail‐
ure or some other type of hardware failure can cause an entire compute node to go
offline. When this happens, all instances running on that compute node will not be
available. Just like with a cloud controller failure, if your infrastructure monitoring

Compute Node Failures and Maintenance | 125

www.it-ebooks.info

http://www.it-ebooks.info/

does not detect a failed compute node, your users will notify you because of their lost
instances.

If a compute node fails and won’t be fixed for a few hours (or at all), you can relaunch
all instances that are hosted on the failed node if you use shared storage
for /var/lib/nova/instances.

To do this, generate a list of instance UUIDs that are hosted on the failed node by
running the following query on the nova database:

mysql> select uuid from instances where host = \
 'c01.example.com' and deleted = 0;

Next, update the nova database to indicate that all instances that used to be hosted on
c01.example.com are now hosted on c02.example.com:

mysql> update instances set host = 'c02.example.com' where host = \
 'c01.example.com' and deleted = 0;

After that, use the nova command to reboot all instances that were on c01.exam‐
ple.com while regenerating their XML files at the same time:

nova reboot --hard <uuid>

Finally, reattach volumes using the same method described in the section Volumes.

/var/lib/nova/instances
It’s worth mentioning this directory in the context of failed compute nodes. This di‐
rectory contains the libvirt KVM file-based disk images for the instances that are hos‐
ted on that compute node. If you are not running your cloud in a shared storage envi‐
ronment, this directory is unique across all compute nodes.

/var/lib/nova/instances contains two types of directories.

The first is the _base directory. This contains all the cached base images from glance
for each unique image that has been launched on that compute node. Files ending in
_20 (or a different number) are the ephemeral base images.

The other directories are titled instance-xxxxxxxx. These directories correspond to
instances running on that compute node. The files inside are related to one of the files
in the _base directory. They’re essentially differential-based files containing only the
changes made from the original _base directory.

All files and directories in /var/lib/nova/instances are uniquely named. The files
in _base are uniquely titled for the glance image that they are based on, and the direc‐
tory names instance-xxxxxxxx are uniquely titled for that particular instance. For
example, if you copy all data from /var/lib/nova/instances on one compute node

126 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

to another, you do not overwrite any files or cause any damage to images that have
the same unique name, because they are essentially the same file.

Although this method is not documented or supported, you can use it when your
compute node is permanently offline but you have instances locally stored on it.

Storage Node Failures and Maintenance
Because of the high redundancy of Object Storage, dealing with object storage node
issues is a lot easier than dealing with compute node issues.

Rebooting a Storage Node
If a storage node requires a reboot, simply reboot it. Requests for data hosted on that
node are redirected to other copies while the server is rebooting.

Shutting Down a Storage Node
If you need to shut down a storage node for an extended period of time (one or more
days), consider removing the node from the storage ring. For example:

swift-ring-builder account.builder remove <ip address of storage node>
swift-ring-builder container.builder remove <ip address of storage node>
swift-ring-builder object.builder remove <ip address of storage node>
swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance

Next, redistribute the ring files to the other nodes:

for i in s01.example.com s02.example.com s03.example.com
> do
> scp *.ring.gz $i:/etc/swift
> done

These actions effectively take the storage node out of the storage cluster.

When the node is able to rejoin the cluster, just add it back to the ring. The exact syn‐
tax you use to add a node to your swift cluster with swift-ring-builder heavily de‐
pends on the original options used when you originally created your cluster. Please
refer back to those commands.

Replacing a Swift Disk
If a hard drive fails in an Object Storage node, replacing it is relatively easy. This as‐
sumes that your Object Storage environment is configured correctly, where the data
that is stored on the failed drive is also replicated to other drives in the Object Storage
environment.

Storage Node Failures and Maintenance | 127

www.it-ebooks.info

http://www.it-ebooks.info/

This example assumes that /dev/sdb has failed.

First, unmount the disk:

umount /dev/sdb

Next, physically remove the disk from the server and replace it with a working disk.

Ensure that the operating system has recognized the new disk:

dmesg | tail

You should see a message about /dev/sdb.

Because it is recommended to not use partitions on a swift disk, simply format the
disk as a whole:

mkfs.xfs /dev/sdb

Finally, mount the disk:

mount -a

Swift should notice the new disk and that no data exists. It then begins replicating the
data to the disk from the other existing replicas.

Handling a Complete Failure
A common way of dealing with the recovery from a full system failure, such as a pow‐
er outage of a data center, is to assign each service a priority, and restore in order.
Table 11-1 shows an example.

Table 11-1. Example service restoration
priority list

Priority Services

1 Internal network connectivity

2 Backing storage services

3 Public network connectivity for user virtual machines

4 nova-compute, nova-network, cinder hosts

5 User virtual machines

10 Message queue and database services

15 Keystone services

128 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

Priority Services

20 cinder-scheduler

21 Image Catalog and Delivery services

22 nova-scheduler services

98 cinder-api

99 nova-api services

100 Dashboard node

Use this example priority list to ensure that user-affected services are restored as soon
as possible, but not before a stable environment is in place. Of course, despite being
listed as a single-line item, each step requires significant work. For example, just after
starting the database, you should check its integrity, or, after starting the nova serv‐
ices, you should verify that the hypervisor matches the database and fix any
mismatches.

Configuration Management
Maintaining an OpenStack cloud requires that you manage multiple physical servers,
and this number might grow over time. Because managing nodes manually is error
prone, we strongly recommend that you use a configuration-management tool. These
tools automate the process of ensuring that all your nodes are configured properly
and encourage you to maintain your configuration information (such as packages
and configuration options) in a version-controlled repository.

Several configuration-management tools are available, and this
guide does not recommend a specific one. The two most popular
ones in the OpenStack community are Puppet, with available
OpenStack Puppet modules; and Chef, with available OpenStack
Chef recipes. Other newer configuration tools include Juju, Ansi‐
ble, and Salt; and more mature configuration management tools in‐
clude CFEngine and Bcfg2.

Working with Hardware
As for your initial deployment, you should ensure that all hardware is appropriately
burned in before adding it to production. Run software that uses the hardware to its
limits—maxing out RAM, CPU, disk, and network. Many options are available, and

Configuration Management | 129

www.it-ebooks.info

http://opsgui.de/1eLBsD7
http://opsgui.de/NPGmnU
http://opsgui.de/1eLBtqO
http://opsgui.de/NPGnID
http://opsgui.de/NPGnID
http://opsgui.de/1eLBxqm
http://opsgui.de/NPGpQQ
http://opsgui.de/NPGpQQ
http://opsgui.de/1eLBACD
http://opsgui.de/NPGoMP
http://opsgui.de/1eLBB9M
http://www.it-ebooks.info/

normally double as benchmark software, so you also get a good idea of the perfor‐
mance of your system.

Adding a Compute Node
If you find that you have reached or are reaching the capacity limit of your comput‐
ing resources, you should plan to add additional compute nodes. Adding more nodes
is quite easy. The process for adding compute nodes is the same as when the initial
compute nodes were deployed to your cloud: use an automated deployment system to
bootstrap the bare-metal server with the operating system and then have a
configuration-management system install and configure OpenStack Compute. Once
the Compute Service has been installed and configured in the same way as the other
compute nodes, it automatically attaches itself to the cloud. The cloud controller noti‐
ces the new node(s) and begins scheduling instances to launch there.

If your OpenStack Block Storage nodes are separate from your compute nodes, the
same procedure still applies because the same queuing and polling system is used in
both services.

We recommend that you use the same hardware for new compute and block storage
nodes. At the very least, ensure that the CPUs are similar in the compute nodes to not
break live migration.

Adding an Object Storage Node
Adding a new object storage node is different from adding compute or block storage
nodes. You still want to initially configure the server by using your automated deploy‐
ment and configuration-management systems. After that is done, you need to add the
local disks of the object storage node into the object storage ring. The exact command
to do this is the same command that was used to add the initial disks to the ring. Sim‐
ply rerun this command on the object storage proxy server for all disks on the new
object storage node. Once this has been done, rebalance the ring and copy the result‐
ing ring files to the other storage nodes.

If your new object storage node has a different number of disks
than the original nodes have, the command to add the new node is
different from the original commands. These parameters vary from
environment to environment.

Replacing Components
Failures of hardware are common in large-scale deployments such as an infrastruc‐
ture cloud. Consider your processes and balance time saving against availability. For
example, an Object Storage cluster can easily live with dead disks in it for some peri‐

130 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

od of time if it has sufficient capacity. Or, if your compute installation is not full, you
could consider live migrating instances off a host with a RAM failure until you have
time to deal with the problem.

Databases
Almost all OpenStack components have an underlying database to store persistent in‐
formation. Usually this database is MySQL. Normal MySQL administration is appli‐
cable to these databases. OpenStack does not configure the databases out of the ordi‐
nary. Basic administration includes performance tweaking, high availability, backup,
recovery, and repairing. For more information, see a standard MySQL administration
guide.

You can perform a couple of tricks with the database to either more quickly retrieve
information or fix a data inconsistency error—for example, an instance was terminat‐
ed, but the status was not updated in the database. These tricks are discussed
throughout this book.

Database Connectivity
Review the component’s configuration file to see how each OpenStack component ac‐
cesses its corresponding database. Look for either sql_connection or simply connec
tion. The following command uses grep to display the SQL connection string for no‐
va, glance, cinder, and keystone:

grep -hE "connection ?=" /etc/nova/nova.conf /etc/glance/glance-*.conf
/etc/cinder/cinder.conf /etc/keystone/keystone.conf
sql_connection = mysql://nova:nova@cloud.alberta.sandbox.cybera.ca/nova
sql_connection = mysql://glance:password@cloud.example.com/glance
sql_connection = mysql://glance:password@cloud.example.com/glance
sql_connection = mysql://cinder:password@cloud.example.com/cinder
 connection = mysql://keystone_admin:password@cloud.example.com/keystone

The connection strings take this format:

mysql:// <username> : <password> @ <hostname> / <database name>

Performance and Optimizing
As your cloud grows, MySQL is utilized more and more. If you suspect that MySQL
might be becoming a bottleneck, you should start researching MySQL optimization.
The MySQL manual has an entire section dedicated to this topic: Optimization Over‐
view.

Databases | 131

www.it-ebooks.info

http://opsgui.de/NPGqUV
http://opsgui.de/NPGqUV
http://www.it-ebooks.info/

HDWMY
Here’s a quick list of various to-do items for each hour, day, week, month, and year.
Please note that these tasks are neither required nor definitive but helpful ideas:

Hourly
• Check your monitoring system for alerts and act on them.
• Check your ticket queue for new tickets.

Daily
• Check for instances in a failed or weird state and investigate why.
• Check for security patches and apply them as needed.

Weekly
• Check cloud usage:

— User quotas
— Disk space
— Image usage
— Large instances
— Network usage (bandwidth and IP usage)

• Verify your alert mechanisms are still working.

Monthly
• Check usage and trends over the past month.
• Check for user accounts that should be removed.
• Check for operator accounts that should be removed.

Quarterly
• Review usage and trends over the past quarter.
• Prepare any quarterly reports on usage and statistics.
• Review and plan any necessary cloud additions.

132 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

• Review and plan any major OpenStack upgrades.

Semiannually
• Upgrade OpenStack.
• Clean up after an OpenStack upgrade (any unused or new services to be aware

of?).

Determining Which Component Is Broken
OpenStack’s collection of different components interact with each other strongly. For
example, uploading an image requires interaction from nova-api, glance-api,
glance-registry, keystone, and potentially swift-proxy. As a result, it is sometimes
difficult to determine exactly where problems lie. Assisting in this is the purpose of
this section.

Tailing Logs
The first place to look is the log file related to the command you are trying to run. For
example, if nova list is failing, try tailing a nova log file and running the command
again:

Terminal 1:

tail -f /var/log/nova/nova-api.log

Terminal 2:

nova list

Look for any errors or traces in the log file. For more information, see Chapter 13.

If the error indicates that the problem is with another component, switch to tailing
that component’s log file. For example, if nova cannot access glance, look at the
glance-api log:

Terminal 1:

tail -f /var/log/glance/api.log

Terminal 2:

nova list

Wash, rinse, and repeat until you find the core cause of the problem.

Determining Which Component Is Broken | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Running Daemons on the CLI
Unfortunately, sometimes the error is not apparent from the log files. In this case,
switch tactics and use a different command; maybe run the service directly on the
command line. For example, if the glance-api service refuses to start and stay run‐
ning, try launching the daemon from the command line:

sudo -u glance -H glance-api

This might print the error and cause of the problem.

The -H flag is required when running the daemons with sudo be‐
cause some daemons will write files relative to the user’s home di‐
rectory, and this write may fail if -H is left off.

Example of Complexity
One morning, a compute node failed to run any instances. The log files were a bit
vague, claiming that a certain instance was unable to be started. This ended up being
a red herring because the instance was simply the first instance in alphabetical order,
so it was the first instance that nova-compute would touch.

Further troubleshooting showed that libvirt was not running at all. This made more
sense. If libvirt wasn’t running, then no instance could be virtualized through KVM.
Upon trying to start libvirt, it would silently die immediately. The libvirt logs did not
explain why.

Next, the libvirtd daemon was run on the command line. Finally a helpful error
message: it could not connect to d-bus. As ridiculous as it sounds, libvirt, and thus
nova-compute, relies on d-bus and somehow d-bus crashed. Simply starting d-bus set
the entire chain back on track, and soon everything was back up and running.

134 | Chapter 11: Maintenance, Failures, and Debugging

www.it-ebooks.info

http://www.it-ebooks.info/

Uninstalling
While we’d always recommend using your automated deployment system to reinstall
systems from scratch, sometimes you do need to remove OpenStack from a system
the hard way. Here’s how:

• Remove all packages.
• Remove remaining files.
• Remove databases.

These steps depend on your underlying distribution, but in general you should be
looking for “purge” commands in your package manager, like aptitude purge ~c
$package. Following this, you can look for orphaned files in the directories refer‐
enced throughout this guide. To uninstall the database properly, refer to the manual
appropriate for the product in use.

Uninstalling | 135

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Network Troubleshooting

Network troubleshooting can unfortunately be a very difficult and confusing proce‐
dure. A network issue can cause a problem at several points in the cloud. Using a logi‐
cal troubleshooting procedure can help mitigate the confusion and more quickly iso‐
late where exactly the network issue is. This chapter aims to give you the information
you need to identify any issues for either nova-network or OpenStack Networking
(neutron) with Linux Bridge or Open vSwitch.

Using “ip a” to Check Interface States
On compute nodes and nodes running nova-network, use the following command to
see information about interfaces, including information about IPs, VLANs, and
whether your interfaces are up:

ip a

If you’re encountering any sort of networking difficulty, one good initial sanity check
is to make sure that your interfaces are up. For example:

$ ip a | grep state
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 qlen 1000
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 master br100 state UP qlen 1000
4: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN
5: br100: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
 UP

You can safely ignore the state of virbr0, which is a default bridge created by libvirt
and not used by OpenStack.

137

www.it-ebooks.info

http://www.it-ebooks.info/

Visualizing nova-network Traffic in the Cloud
If you are logged in to an instance and ping an external host—for example, Google—
the ping packet takes the route shown in Figure 12-1.

Figure 12-1. Traffic route for ping packet

1. The instance generates a packet and places it on the virtual Network Interface
Card (NIC) inside the instance, such as eth0.

2. The packet transfers to the virtual NIC of the compute host, such as, vnet1. You
can find out what vnet NIC is being used by looking at the /etc/libvirt/qemu/
instance-xxxxxxxx.xml file.

3. From the vnet NIC, the packet transfers to a bridge on the compute node, such as
br100.
If you run FlatDHCPManager, one bridge is on the compute node. If you run
VlanManager, one bridge exists for each VLAN.
To see which bridge the packet will use, run the command:

$ brctl show

Look for the vnet NIC. You can also reference nova.conf and look for the
flat_interface_bridge option.

4. The packet transfers to the main NIC of the compute node. You can also see this
NIC in the brctl output, or you can find it by referencing the flat_interface
option in nova.conf.

5. After the packet is on this NIC, it transfers to the compute node’s default gateway.
The packet is now most likely out of your control at this point. The diagram de‐

138 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

picts an external gateway. However, in the default configuration with multi-host,
the compute host is the gateway.

Reverse the direction to see the path of a ping reply. From this path, you can see that a
single packet travels across four different NICs. If a problem occurs with any of these
NICs, a network issue occurs.

Visualizing OpenStack Networking Service Traffic in the
Cloud
The OpenStack Networking Service, neutron, has many more degrees of freedom
than nova-network does because of its pluggable backend. It can be configured with
open source or vendor proprietary plug-ins that control software defined networking
(SDN) hardware or plug-ins that use Linux native facilities on your hosts, such as
Open vSwitch or Linux Bridge.

The networking chapter of the OpenStack Cloud Administrator Guide shows a varie‐
ty of networking scenarios and their connection paths. The purpose of this section is
to give you the tools to troubleshoot the various components involved however they
are plumbed together in your environment.

For this example, we will use the Open vSwitch (OVS) backend. Other backend plug-
ins will have very different flow paths. OVS is the most popularly deployed network
driver, according to the October 2013 OpenStack User Survey, with 50 percent more
sites using it than the second place Linux Bridge driver. We’ll describe each step in
turn, with Figure 12-2 for reference.

1. The instance generates a packet and places it on the virtual NIC inside the in‐
stance, such as eth0.

2. The packet transfers to a Test Access Point (TAP) device on the compute host,
such as tap690466bc-92. You can find out what TAP is being used by looking at
the /etc/libvirt/qemu/instance-xxxxxxxx.xml file.
The TAP device name is constructed using the first 11 characters of the port ID
(10 hex digits plus an included '-'), so another means of finding the device name
is to use the neutron command. This returns a pipe-delimited list, the first item
of which is the port ID. For example, to get the port ID associated with IP address
10.0.0.10, do this:

neutron port-list |grep 10.0.0.10|cut -d \
| -f 2 ff387e54-9e54-442b-94a3-aa4481764f1d

Taking the first 11 characters, we can construct a device name of tapff387e54-9e
from this output.

Visualizing OpenStack Networking Service Traffic in the Cloud | 139

www.it-ebooks.info

http://opsgui.de/1eLBD1f
http://www.it-ebooks.info/

Figure 12-2. Neutron network paths

3. The TAP device is connected to the integration bridge, br-int. This bridge con‐
nects all the instance TAP devices and any other bridges on the system. In this
example, we have int-br-eth1 and patch-tun. int-br-eth1 is one half of a veth
pair connecting to the bridge br-eth1, which handles VLAN networks trunked
over the physical Ethernet device eth1. patch-tun is an Open vSwitch internal
port that connects to the br-tun bridge for GRE networks.
The TAP devices and veth devices are normal Linux network devices and may be
inspected with the usual tools, such as ip and tcpdump. Open vSwitch internal
devices, such as patch-tun, are only visible within the Open vSwitch environ‐
ment. If you try to run tcpdump -i patch-tun, it will raise an error, saying that
the device does not exist.

140 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

It is possible to watch packets on internal interfaces, but it does take a little bit of
networking gymnastics. First you need to create a dummy network device that
normal Linux tools can see. Then you need to add it to the bridge containing the
internal interface you want to snoop on. Finally, you need to tell Open vSwitch to
mirror all traffic to or from the internal port onto this dummy port. After all this,
you can then run tcpdump on the dummy interface and see the traffic on the in‐
ternal port.
To capture packets from the patch-tun internal interface on integration bridge, br-int:

a. Create and bring up a dummy interface, snooper0:
ip link add name snooper0 type dummy

ip link set dev snooper0 up

b. Add device snooper0 to bridge br-int:
ovs-vsctl add-port br-int snooper0

c. Create mirror of patch-tun to snooper0 (returns UUID of mirror port):
ovs-vsctl -- set Bridge br-int mirrors=@m -- --id=@snooper0 \
get Port snooper0 -- --id=@patch-tun get Port patch-tun \
-- --id=@m create Mirror name=mymirror select-dst-port=@patch-tun \
select-src-port=@patch-tun output-port=@snooper0 \
90eb8cb9-8441-4f6d-8f67-0ea037f40e6c

d. Profit. You can now see traffic on patch-tun by running tcpdump -i snoop
er0.

e. Clean up by clearing all mirrors on br-int and deleting the dummy interface:
ovs-vsctl clear Bridge br-int mirrors

ip link delete dev snooper0

On the integration bridge, networks are distinguished using internal VLANs re‐
gardless of how the networking service defines them. This allows instances on
the same host to communicate directly without transiting the rest of the virtual,
or physical, network. These internal VLAN IDs are based on the order they are
created on the node and may vary between nodes. These IDs are in no way relat‐
ed to the segmentation IDs used in the network definition and on the physical
wire.
VLAN tags are translated between the external tag defined in the network set‐
tings, and internal tags in several places. On the br-int, incoming packets from
the int-br-eth1 are translated from external tags to internal tags. Other transla‐
tions also happen on the other bridges and will be discussed in those sections.

Visualizing OpenStack Networking Service Traffic in the Cloud | 141

www.it-ebooks.info

http://www.it-ebooks.info/

To discover which internal VLAN tag is in use for a given external VLAN by using the ovs-ofctl
command:

a. Find the external VLAN tag of the network you’re interested in. This is the
provider:segmentation_id as returned by the networking service:

neutron net-show --fields provider:segmentation_id <network name>
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
| provider:network_type | vlan |
| provider:segmentation_id | 2113 |
+---------------------------+--------------------------------------+

b. Grep for the provider:segmentation_id, 2113 in this case, in the output of
ovs-ofctl dump-flows br-int:

ovs-ofctl dump-flows br-int|grep vlan=2113
cookie=0x0, duration=173615.481s, table=0, n_packets=7676140, \
n_bytes=444818637, idle_age=0, hard_age=65534, priority=3, \
in_port=1,dl_vlan=2113 actions=mod_vlan_vid:7,NORMAL

Here you can see packets received on port ID 1 with the VLAN tag 2113 are
modified to have the internal VLAN tag 7. Digging a little deeper, you can
confirm that port 1 is in fact int-br-eth1:

ovs-ofctl show br-int
OFPT_FEATURES_REPLY (xid=0x2): dpid:000022bc45e1914b
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS \
ARP_MATCH_IP
actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC \
SET_DL_DST SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC \
SET_TP_DST ENQUEUE
 1(int-br-eth1): addr:c2:72:74:7f:86:08
 config: 0
 state: 0
 current: 10GB-FD COPPER
 speed: 10000 Mbps now, 0 Mbps max
 2(patch-tun): addr:fa:24:73:75:ad:cd
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 3(tap9be586e6-79): addr:fe:16:3e:e6:98:56
 config: 0
 state: 0
 current: 10MB-FD COPPER
 speed: 10 Mbps now, 0 Mbps max
 LOCAL(br-int): addr:22:bc:45:e1:91:4b
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0

142 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

4. The next step depends on whether the virtual network is configured to use
802.1q VLAN tags or GRE:
a. VLAN-based networks exit the integration bridge via veth interface int-br-

eth1 and arrive on the bridge br-eth1 on the other member of the veth pair
phy-br-eth1. Packets on this interface arrive with internal VLAN tags and are
translated to external tags in the reverse of the process described above:

ovs-ofctl dump-flows br-eth1|grep 2113
cookie=0x0, duration=184168.225s, table=0, n_packets=0, n_bytes=0, \
idle_age=65534, hard_age=65534, priority=4,in_port=1,dl_vlan=7 \
actions=mod_vlan_vid:2113,NORMAL

Packets, now tagged with the external VLAN tag, then exit onto the physical
network via eth1. The Layer2 switch this interface is connected to must be
configured to accept traffic with the VLAN ID used. The next hop for this
packet must also be on the same layer-2 network.

b. GRE-based networks are passed with patch-tun to the tunnel bridge br-tun
on interface patch-int. This bridge also contains one port for each GRE tun‐
nel peer, so one for each compute node and network node in your network.
The ports are named sequentially from gre-1 onward.
Matching gre-<n> interfaces to tunnel endpoints is possible by looking at the
Open vSwitch state:

ovs-vsctl show |grep -A 3 -e Port\ \"gre-
 Port "gre-1"
 Interface "gre-1"
 type: gre
 options: {in_key=flow, local_ip="10.10.128.21", \
 out_key=flow, remote_ip="10.10.128.16"}

In this case, gre-1 is a tunnel from IP 10.10.128.21, which should match a lo‐
cal interface on this node, to IP 10.10.128.16 on the remote side.
These tunnels use the regular routing tables on the host to route the resulting
GRE packet, so there is no requirement that GRE endpoints are all on the
same layer-2 network, unlike VLAN encapsulation.
All interfaces on the br-tun are internal to Open vSwitch. To monitor traffic
on them, you need to set up a mirror port as described above for patch-tun in
the br-int bridge.
All translation of GRE tunnels to and from internal VLANs happens on this
bridge.

To discover which internal VLAN tag is in use for a GRE tunnel by using the ovs-ofctl command:

a. Find the provider:segmentation_id of the network you’re interested in. This
is the same field used for the VLAN ID in VLAN-based networks:

Visualizing OpenStack Networking Service Traffic in the Cloud | 143

www.it-ebooks.info

http://www.it-ebooks.info/

neutron net-show --fields provider:segmentation_id <network name>
+--------------------------+-------+
| Field | Value |
+--------------------------+-------+
| provider:network_type | gre |
| provider:segmentation_id | 3 |
+--------------------------+-------+

b. Grep for 0x<provider:segmentation_id>, 0x3 in this case, in the output of
ovs-ofctl dump-flows br-int:

ovs-ofctl dump-flows br-int|grep 0x3
cookie=0x0, duration=380575.724s, table=2, n_packets=1800, \
n_bytes=286104, priority=1,tun_id=0x3 \
actions=mod_vlan_vid:1,resubmit(,10)
 cookie=0x0, duration=715.529s, table=20, n_packets=5, \
n_bytes=830, hard_timeout=300,priority=1, \
vlan_tci=0x0001/0x0fff,dl_dst=fa:16:3e:a6:48:24 \
actions=load:0->NXM_OF_VLAN_TCI[], \
load:0x3->NXM_NX_TUN_ID[],output:53
 cookie=0x0, duration=193729.242s, table=21, n_packets=58761, \
n_bytes=2618498, dl_vlan=1 actions=strip_vlan,set_tunnel:0x3, \
output:4,output:58,output:56,output:11,output:12,output:47, \
output:13,output:48,output:49,output:44,output:43,output:45, \
output:46,output:30,output:31,output:29,output:28,output:26, \
output:27,output:24,output:25,output:32,output:19,output:21, \
output:59,output:60,output:57,output:6,output:5,output:20, \
output:18,output:17,output:16,output:15,output:14,output:7, \
output:9,output:8,output:53,output:10,output:3,output:2, \
output:38,output:37,output:39,output:40,output:34,output:23, \
output:36,output:35,output:22,output:42,output:41,output:54, \
output:52,output:51,output:50,output:55,output:33

Here, you see three flows related to this GRE tunnel. The first is the transla‐
tion from inbound packets with this tunnel ID to internal VLAN ID 1. The
second shows a unicast flow to output port 53 for packets destined for MAC
address fa:16:3e:a6:48:24. The third shows the translation from the internal
VLAN representation to the GRE tunnel ID flooded to all output ports. For
further details of the flow descriptions, see the man page for ovs-ofctl. As in
the previous VLAN example, numeric port IDs can be matched with their
named representations by examining the output of ovs-ofctl show br-tun.

5. The packet is then received on the network node. Note that any traffic to the l3-
agent or dhcp-agent will be visible only within their network namespace. Watch‐
ing any interfaces outside those namespaces, even those that carry the network
traffic, will only show broadcast packets like Address Resolution Protocols
(ARPs), but unicast traffic to the router or DHCP address will not be seen. See
“Dealing with Network Namespaces” for detail on how to run commands within
these namespaces.

144 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, it is possible to configure VLAN-based networks to use external
routers rather than the l3-agent shown here, so long as the external router is on
the same VLAN:
a. VLAN-based networks are received as tagged packets on a physical network

interface, eth1 in this example. Just as on the compute node, this interface is a
member of the br-eth1 bridge.

b. GRE-based networks will be passed to the tunnel bridge br-tun, which be‐
haves just like the GRE interfaces on the compute node.

6. Next, the packets from either input go through the integration bridge, again just
as on the compute node.

7. The packet then makes it to the l3-agent. This is actually another TAP device
within the router’s network namespace. Router namespaces are named in the
form qrouter-<router-uuid>. Running ip a within the namespace will show
the TAP device name, qr-e6256f7d-31 in this example:

ip netns exec qrouter-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5 ip a|grep state
10: qr-e6256f7d-31: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue \
 state UNKNOWN
11: qg-35916e1f-36: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 \
 qdisc pfifo_fast state UNKNOWN qlen 500
28: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN

8. The qg-<n> interface in the l3-agent router namespace sends the packet on to its
next hop through device eth0 on the external bridge br-ex. This bridge is con‐
structed similarly to br-eth1 and may be inspected in the same way.

9. This external bridge also includes a physical network interface, eth0 in this ex‐
ample, which finally lands the packet on the external network destined for an ex‐
ternal router or destination.

10. DHCP agents running on OpenStack networks run in namespaces similar to the
l3-agents. DHCP namespaces are named qdhcp-<uuid> and have a TAP device
on the integration bridge. Debugging of DHCP issues usually involves working
inside this network namespace.

Finding a Failure in the Path
Use ping to quickly find where a failure exists in the network path. In an instance,
first see whether you can ping an external host, such as google.com. If you can, then
there shouldn’t be a network problem at all.

If you can’t, try pinging the IP address of the compute node where the instance is
hosted. If you can ping this IP, then the problem is somewhere between the compute
node and that compute node’s gateway.

Finding a Failure in the Path | 145

www.it-ebooks.info

http://www.it-ebooks.info/

If you can’t ping the IP address of the compute node, the problem is between the in‐
stance and the compute node. This includes the bridge connecting the compute
node’s main NIC with the vnet NIC of the instance.

One last test is to launch a second instance and see whether the two instances can
ping each other. If they can, the issue might be related to the firewall on the compute
node.

tcpdump
One great, although very in-depth, way of troubleshooting network issues is to use
tcpdump. We recommended using tcpdump at several points along the network path
to correlate where a problem might be. If you prefer working with a GUI, either live
or by using a tcpdump capture, do also check out Wireshark.

For example, run the following command:

tcpdump -i any -n -v \ 'icmp[icmptype] = icmp-echoreply or icmp[icmptype] =
icmp-echo'

Run this on the command line of the following areas:

1. An external server outside of the cloud
2. A compute node
3. An instance running on that compute node

In this example, these locations have the following IP addresses:

Instance
 10.0.2.24
 203.0.113.30
 Compute Node
 10.0.0.42
 203.0.113.34
 External Server
 1.2.3.4

Next, open a new shell to the instance and then ping the external host where tcpdump
is running. If the network path to the external server and back is fully functional, you
see something like the following:

On the external server:

12:51:42.020227 IP (tos 0x0, ttl 61, id 0, offset 0, flags [DF], \
proto ICMP (1), length 84)
 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.020255 IP (tos 0x0, ttl 64, id 8137, offset 0, flags [none], \
proto ICMP (1), length 84)

146 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://opsgui.de/NPGrIm
http://www.it-ebooks.info/

 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1, \
 length 64

On the compute node:

12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], \
proto ICMP (1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], \
proto ICMP (1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.019545 IP (tos 0x0, ttl 63, id 0, offset 0, flags [DF], \
proto ICMP (1), length 84)
 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1, length 64
12:51:42.019780 IP (tos 0x0, ttl 62, id 8137, offset 0, flags [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1, length 64
12:51:42.019801 IP (tos 0x0, ttl 61, id 8137, offset 0, flags [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length 64
12:51:42.019807 IP (tos 0x0, ttl 61, id 8137, offset 0, flags [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length 64

On the instance:

12:51:42.020974 IP (tos 0x0, ttl 61, id 8137, offset 0, flags [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length 64

Here, the external server received the ping request and sent a ping reply. On the com‐
pute node, you can see that both the ping and ping reply successfully passed through.
You might also see duplicate packets on the compute node, as seen above, because
tcpdump captured the packet on both the bridge and outgoing interface.

iptables
Through nova-network, OpenStack Compute automatically manages iptables, in‐
cluding forwarding packets to and from instances on a compute node, forwarding
floating IP traffic, and managing security group rules.

Run the following command to view the current iptables configuration:

iptables-save

If you modify the configuration, it reverts the next time you restart
nova-network. You must use OpenStack to manage iptables.

iptables | 147

www.it-ebooks.info

http://www.it-ebooks.info/

Network Configuration in the Database for nova-network
With nova-network, the nova database table contains a few tables with networking
information:

fixed_ips

Contains each possible IP address for the subnet(s) added to Compute. This table
is related to the instances table by way of the fixed_ips.instance_uuid col‐
umn.

floating_ips

Contains each floating IP address that was added to Compute. This table is relat‐
ed to the fixed_ips table by way of the floating_ips.fixed_ip_id column.

instances

Not entirely network specific, but it contains information about the instance that
is utilizing the fixed_ip and optional floating_ip.

From these tables, you can see that a floating IP is technically never directly related to
an instance; it must always go through a fixed IP.

Manually Deassociating a Floating IP
Sometimes an instance is terminated but the floating IP was not correctly de-
associated from that instance. Because the database is in an inconsistent state, the
usual tools to deassociate the IP no longer work. To fix this, you must manually up‐
date the database.

First, find the UUID of the instance in question:

mysql> select uuid from instances where hostname = 'hostname';

Next, find the fixed IP entry for that UUID:

mysql> select * from fixed_ips where instance_uuid = '<uuid>';

You can now get the related floating IP entry:

mysql> select * from floating_ips where fixed_ip_id = '<fixed_ip_id>';

And finally, you can deassociate the floating IP:

mysql> update floating_ips set fixed_ip_id = NULL, host = NULL where
 fixed_ip_id = '<fixed_ip_id>';

You can optionally also deallocate the IP from the user’s pool:

mysql> update floating_ips set project_id = NULL where
 fixed_ip_id = '<fixed_ip_id>';

148 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging DHCP Issues with nova-network
One common networking problem is that an instance boots successfully but is not
reachable because it failed to obtain an IP address from dnsmasq, which is the DHCP
server that is launched by the nova-network service.

The simplest way to identify that this is the problem with your instance is to look at
the console output of your instance. If DHCP failed, you can retrieve the console log
by doing:

$ nova console-log <instance name or uuid>

If your instance failed to obtain an IP through DHCP, some messages should appear
in the console. For example, for the Cirros image, you see output that looks like the
following:

udhcpc (v1.17.2) started
Sending discover...
Sending discover...
Sending discover...
No lease, forking to background
starting DHCP forEthernet interface eth0 [[1;32mOK[0;39m]
cloud-setup: checking http://169.254.169.254/2009-04-04/meta-data/instance-id
wget: can't connect to remote host (169.254.169.254): Network is
unreachable

After you establish that the instance booted properly, the task is to figure out where
the failure is.

A DHCP problem might be caused by a misbehaving dnsmasq process. First, debug
by checking logs and then restart the dnsmasq processes only for that project (ten‐
ant). In VLAN mode, there is a dnsmasq process for each tenant. Once you have re‐
started targeted dnsmasq processes, the simplest way to rule out dnsmasq causes is to
kill all of the dnsmasq processes on the machine and restart nova-network. As a last
resort, do this as root:

killall dnsmasq
restart nova-network

Use openstack-nova-network on RHEL/CentOS/Fedora but nova-
network on Ubuntu/Debian.

Several minutes after nova-network is restarted, you should see new dnsmasq pro‐
cesses running:

Debugging DHCP Issues with nova-network | 149

www.it-ebooks.info

http://www.it-ebooks.info/

ps aux | grep dnsmasq

nobody 3735 0.0 0.0 27540 1044 ? S 15:40 0:00 /usr/sbin/dnsmasq --strict-order \
 --bind-interfaces --conf-file= \
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid \
 --listen-address=192.168.100.1 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s \
 --dhcp-lease-max=256 \
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf \
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro
root 3736 0.0 0.0 27512 444 ? S 15:40 0:00 /usr/sbin/dnsmasq --strict-order \
 --bind-interfaces --conf-file= \
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid \
 --listen-address=192.168.100.1 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s \
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro

If your instances are still not able to obtain IP addresses, the next thing to check is
whether dnsmasq is seeing the DHCP requests from the instance. On the machine
that is running the dnsmasq process, which is the compute host if running in multi-
host mode, look at /var/log/syslog to see the dnsmasq output. If dnsmasq is seeing
the request properly and handing out an IP, the output looks like this:

Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPDISCOVER(br100) fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPOFFER(br100) 192.168.100.3
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPREQUEST(br100) 192.168.100.3
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPACK(br100) 192.168.100.3
fa:16:3e:56:0b:6f test

If you do not see the DHCPDISCOVER, a problem exists with the packet getting from the
instance to the machine running dnsmasq. If you see all of the preceding output and
your instances are still not able to obtain IP addresses, then the packet is able to get
from the instance to the host running dnsmasq, but it is not able to make the return
trip.

You might also see a message such as this:

Feb 27 22:01:36 mynode dnsmasq-dhcp[25435]: DHCPDISCOVER(br100)
 fa:16:3e:78:44:84 no address available

This may be a dnsmasq and/or nova-network related issue. (For the preceding exam‐
ple, the problem happened to be that dnsmasq did not have any more IP addresses to
give away because there were no more fixed IPs available in the OpenStack Compute
database.)

If there’s a suspicious-looking dnsmasq log message, take a look at the command-line
arguments to the dnsmasq processes to see if they look correct:

150 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

$ ps aux | grep dnsmasq

The output looks something like the following:

108 1695 0.0 0.0 25972 1000 ? S Feb26 0:00 /usr/sbin/dnsmasq
-u libvirt-dnsmasq \
--strict-order --bind-interfaces
 --pid-file=/var/run/libvirt/network/default.pid --conf-file=
 --except-interface lo --listen-address 192.168.122.1
 --dhcp-range 192.168.122.2,192.168.122.254
 --dhcp-leasefile=/var/lib/libvirt/dnsmasq/default.leases
 --dhcp-lease-max=253 --dhcp-no-override
nobody 2438 0.0 0.0 27540 1096 ? S Feb26 0:00 /usr/sbin/dnsmasq --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid
 --listen-address=192.168.100.1
 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro
 root 2439 0.0 0.0 27512 472 ? S Feb26 0:00 /usr/sbin/dnsmasq --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-br100.pid
 --listen-address=192.168.100.1
 --except-interface=lo
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro

The output shows three different dnsmasq processes. The dnsmasq process that has
the DHCP subnet range of 192.168.122.0 belongs to libvirt and can be ignored. The
other two dnsmasq processes belong to nova-network. The two processes are actually
related—one is simply the parent process of the other. The arguments of the dnsmasq
processes should correspond to the details you configured nova-network with.

If the problem does not seem to be related to dnsmasq itself, at this point use tcpdump
on the interfaces to determine where the packets are getting lost.

DHCP traffic uses UDP. The client sends from port 68 to port 67 on the server. Try to
boot a new instance and then systematically listen on the NICs until you identify the
one that isn’t seeing the traffic. To use tcpdump to listen to ports 67 and 68 on br100,
you would do:

tcpdump -i br100 -n port 67 or port 68

You should be doing sanity checks on the interfaces using command such as ip a and
brctl show to ensure that the interfaces are actually up and configured the way that
you think that they are.

Debugging DHCP Issues with nova-network | 151

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging DNS Issues
If you are able to use SSH to log into an instance, but it takes a very long time (on the
order of a minute) to get a prompt, then you might have a DNS issue. The reason a
DNS issue can cause this problem is that the SSH server does a reverse DNS lookup
on the IP address that you are connecting from. If DNS lookup isn’t working on your
instances, then you must wait for the DNS reverse lookup timeout to occur for the
SSH login process to complete.

When debugging DNS issues, start by making sure that the host where the dnsmasq
process for that instance runs is able to correctly resolve. If the host cannot resolve,
then the instances won’t be able to either.

A quick way to check whether DNS is working is to resolve a hostname inside your
instance by using the host command. If DNS is working, you should see:

$ host openstack.org
openstack.org has address 174.143.194.225
openstack.org mail is handled by 10 mx1.emailsrvr.com.
openstack.org mail is handled by 20 mx2.emailsrvr.com.

If you’re running the Cirros image, it doesn’t have the “host” program installed, in
which case you can use ping to try to access a machine by hostname to see whether it
resolves. If DNS is working, the first line of ping would be:

$ ping openstack.org
PING openstack.org (174.143.194.225): 56 data bytes

If the instance fails to resolve the hostname, you have a DNS problem. For example:

$ ping openstack.org
ping: bad address 'openstack.org'

In an OpenStack cloud, the dnsmasq process acts as the DNS server for the instances
in addition to acting as the DHCP server. A misbehaving dnsmasq process may be
the source of DNS-related issues inside the instance. As mentioned in the previous
section, the simplest way to rule out a misbehaving dnsmasq process is to kill all the
dnsmasq processes on the machine and restart nova-network. However, be aware that
this command affects everyone running instances on this node, including tenants
that have not seen the issue. As a last resort, as root:

killall dnsmasq
restart nova-network

After the dnsmasq processes start again, check whether DNS is working.

If restarting the dnsmasq process doesn’t fix the issue, you might need to use tcpdump
to look at the packets to trace where the failure is. The DNS server listens on UDP
port 53. You should see the DNS request on the bridge (such as, br100) of your com‐
pute node. Let’s say you start listening with tcpdump on the compute node:

152 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

tcpdump -i br100 -n -v udp port 53
tcpdump: listening on br100, link-type EN10MB (Ethernet), capture size 65535
bytes

Then, if you use SSH to log into your instance and try ping openstack.org, you
should see something like:

16:36:18.807518 IP (tos 0x0, ttl 64, id 56057, offset 0, flags [DF],
proto UDP (17), length 59)
 192.168.100.4.54244 > 192.168.100.1.53: 2+ A? openstack.org. (31)
16:36:18.808285 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
proto UDP (17), length 75)
 192.168.100.1.53 > 192.168.100.4.54244: 2 1/0/0 openstack.org. A
 174.143.194.225 (47)

Troubleshooting Open vSwitch
Open vSwitch as used in the previous OpenStack Networking Service examples is a
full-featured multilayer virtual switch licensed under the open source Apache 2.0 li‐
cense. Full documentation can be found at the project’s website. In practice, given the
preceding configuration, the most common issues are being sure that the required
bridges (br-int, br-tun, br-ex, etc.) exist and have the proper ports connected to
them.

The Open vSwitch driver should and usually does manage this automatically, but it is
useful to know how to do this by hand with the ovs-vsctl command. This command
has many more subcommands than we will use here; see the man page or use ovs-
vsctl --help for the full listing.

To list the bridges on a system, use ovs-vsctl list-br. This example shows a com‐
pute node that has an internal bridge and a tunnel bridge. VLAN networks are
trunked through the eth1 network interface:

ovs-vsctl list-br
br-int
br-tun
eth1-br

Working from the physical interface inwards, we can see the chain of ports and
bridges. First, the bridge eth1-br, which contains the physical network interface eth1
and the virtual interface phy-eth1-br:

ovs-vsctl list-ports eth1-br
eth1
phy-eth1-br

Next, the internal bridge, br-int, contains int-eth1-br, which pairs with phy-eth1-
br to connect to the physical network shown in the previous bridge, patch-tun,

Troubleshooting Open vSwitch | 153

www.it-ebooks.info

http://opsgui.de/1eLBFGA
http://www.it-ebooks.info/

which is used to connect to the GRE tunnel bridge and the TAP devices that connect
to the instances currently running on the system:

ovs-vsctl list-ports br-int
int-eth1-br
patch-tun
tap2d782834-d1
tap690466bc-92
tap8a864970-2d

The tunnel bridge, br-tun, contains the patch-int interface and gre-<N> interfaces
for each peer it connects to via GRE, one for each compute and network node in your
cluster:

ovs-vsctl list-ports br-tun
patch-int
gre-1
.
.
.
gre-<N>

If any of these links is missing or incorrect, it suggests a configuration error. Bridges
can be added with ovs-vsctl add-br, and ports can be added to bridges with ovs-
vsctl add-port. While running these by hand can be useful debugging, it is impera‐
tive that manual changes that you intend to keep be reflected back into your configu‐
ration files.

Dealing with Network Namespaces
Linux network namespaces are a kernel feature the networking service uses to sup‐
port multiple isolated layer-2 networks with overlapping IP address ranges. The sup‐
port may be disabled, but it is on by default. If it is enabled in your environment, your
network nodes will run their dhcp-agents and l3-agents in isolated namespaces. Net‐
work interfaces and traffic on those interfaces will not be visible in the default name‐
space.

To see whether you are using namespaces, run ip netns:

ip netns
qdhcp-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5
qdhcp-a4d00c60-f005-400e-a24c-1bf8b8308f98
qdhcp-fe178706-9942-4600-9224-b2ae7c61db71
qdhcp-0a1d0a27-cffa-4de3-92c5-9d3fd3f2e74d
qrouter-8a4ce760-ab55-4f2f-8ec5-a2e858ce0d39

154 | Chapter 12: Network Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

L3-agent router namespaces are named qrouter-<router_uuid>, and dhcp-agent
name spaces are named qdhcp-<net_uuid>. This output shows a network node with
four networks running dhcp-agents, one of which is also running an l3-agent router.
It’s important to know which network you need to be working in. A list of existing
networks and their UUIDs can be obtained buy running neutron net-list with ad‐
ministrative credentials.

Once you’ve determined which namespace you need to work in, you can use any of
the debugging tools mention earlier by prefixing the command with ip netns exec
<namespace>. For example, to see what network interfaces exist in the first qdhcp
namespace returned above, do this:

ip netns exec qdhcp-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5 ip a
10: tape6256f7d-31: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN
 link/ether fa:16:3e:aa:f7:a1 brd ff:ff:ff:ff:ff:ff
 inet 10.0.1.100/24 brd 10.0.1.255 scope global tape6256f7d-31
 inet 169.254.169.254/16 brd 169.254.255.255 scope global tape6256f7d-31
 inet6 fe80::f816:3eff:feaa:f7a1/64 scope link
 valid_lft forever preferred_lft forever
28: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

From this you see that the DHCP server on that network is using the tape6256f7d-31
device and has an IP address of 10.0.1.100. Seeing the address 169.254.169.254, you
can also see that the dhcp-agent is running a metadata-proxy service. Any of the
commands mentioned previously in this chapter can be run in the same way. It is also
possible to run a shell, such as bash, and have an interactive session within the name‐
space. In the latter case, exiting the shell returns you to the top-level default name‐
space.

Summary
The authors have spent too much time looking at packet dumps in order to distill this
information for you. We trust that, following the methods outlined in this chapter,
you will have an easier time! Aside from working with the tools and steps above, don’t
forget that sometimes an extra pair of eyes goes a long way to assist.

Summary | 155

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Logging and Monitoring

As an OpenStack cloud is composed of so many different services, there are a large
number of log files. This chapter aims to assist you in locating and working with
them and describes other ways to track the status of your deployment.

Where Are the Logs?
Most services use the convention of writing their log files to subdirectories of
the /var/log directory, as listed in Table 13-1.

Table 13-1. OpenStack log locations

Node type Service Log location

Cloud controller nova-* /var/log/nova

Cloud controller glance-* /var/log/glance

Cloud controller cinder-* /var/log/cinder

Cloud controller keystone-* /var/log/keystone

Cloud controller neutron-* /var/log/neutron

Cloud controller horizon /var/log/apache2/

All nodes misc (swift, dnsmasq) /var/log/syslog

Compute nodes libvirt /var/log/libvirt/libvirtd.log

157

www.it-ebooks.info

http://www.it-ebooks.info/

Node type Service Log location

Compute nodes Console (boot up messages)
for VM instances:

/var/lib/nova/instances/instance-

<instance id>/console.log

Block Storage nodes cinder-volume /var/log/cinder/cinder-volume.log

Reading the Logs
OpenStack services use the standard logging levels, at increasing severity: DEBUG,
INFO, AUDIT, WARNING, ERROR, CRITICAL, and TRACE. That is, messages only
appear in the logs if they are more “severe” than the particular log level, with DEBUG
allowing all log statements through. For example, TRACE is logged only if the soft‐
ware has a stack trace, while INFO is logged for every message including those that
are only for information.

To disable DEBUG-level logging, edit /etc/nova/nova.conf as follows:

debug=false

Keystone is handled a little differently. To modify the logging level, edit the /etc/
keystone/logging.conf file and look at the logger_root and handler_file sec‐
tions.

Logging for horizon is configured in /etc/openstack_dashboard/local_set

tings.py. Because horizon is a Django web application, it follows the Django Log‐
ging framework conventions.

The first step in finding the source of an error is typically to search for a CRITICAL,
TRACE, or ERROR message in the log starting at the bottom of the log file.

Here is an example of a CRITICAL log message, with the corresponding TRACE
(Python traceback) immediately following:

2013-02-25 21:05:51 17409 CRITICAL cinder [-] Bad or unexpected response from
the storage volume backend API: volume group
 cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder Traceback (most recent call last):
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/bin/cinder-volume", line 48,
in <module>
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 422, in wait
2013-02-25 21:05:51 17409 TRACE cinder _launcher.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 127, in wait
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
eventlet/greenthread.py", line 166, in wait

158 | Chapter 13: Logging and Monitoring

www.it-ebooks.info

http://opsgui.de/NPGgww
http://opsgui.de/NPGgww
http://www.it-ebooks.info/

2013-02-25 21:05:51 17409 TRACE cinder return self._exit_event.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
eventlet/event.py", line 116, in wait
2013-02-25 21:05:51 17409 TRACE cinder return hubs.get_hub().switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
eventlet/hubs/hub.py", line 177, in switch
2013-02-25 21:05:51 17409 TRACE cinder return self.greenlet.switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
eventlet/greenthread.py", line 192, in main
2013-02-25 21:05:51 17409 TRACE cinder result = function(*args, **kwargs)
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 88, in run_server
2013-02-25 21:05:51 17409 TRACE cinder server.start()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/service.py", line 159, in start
2013-02-25 21:05:51 17409 TRACE cinder self.manager.init_host()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/volume/manager.py", line 95,
 in init_host
2013-02-25 21:05:51 17409 TRACE cinder self.driver.check_for_setup_error()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/dist-packages/
cinder/volume/driver.py", line 116,
 in check_for_setup_error
2013-02-25 21:05:51 17409 TRACE cinder raise exception.VolumeBackendAPIExcep
tion(data=exception_message)
2013-02-25 21:05:51 17409 TRACE cinder VolumeBackendAPIException: Bad or unexpec
ted response from the storage volume
 backend API: volume group cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder

In this example, cinder-volumes failed to start and has provided a stack trace, since
its volume backend has been unable to set up the storage volume—probably because
the LVM volume that is expected from the configuration does not exist.

Here is an example error log:

2013-02-25 20:26:33 6619 ERROR nova.openstack.common.rpc.common [-] AMQP server
on localhost:5672 is unreachable:
 [Errno 111] ECONNREFUSED. Trying again in 23 seconds.

In this error, a nova service has failed to connect to the RabbitMQ server because it
got a connection refused error.

Tracing Instance Requests
When an instance fails to behave properly, you will often have to trace activity associ‐
ated with that instance across the log files of various nova-* services and across both
the cloud controller and compute nodes.

The typical way is to trace the UUID associated with an instance across the service
logs.

Tracing Instance Requests | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Consider the following example:

$ nova list
+--------------------------------+--------+--------+--------------------------+
| ID | Name | Status | Networks |
+--------------------------------+--------+--------+--------------------------+
| fafed8-4a46-413b-b113-f1959ffe | cirros | ACTIVE | novanetwork=192.168.100.3|
+--------------------------------------+--------+--------+--------------------+

Here, the ID associated with the instance is faf7ded8-4a46-413b-b113-

f19590746ffe. If you search for this string on the cloud controller in the /var/log/
nova-*.log files, it appears in nova-api.log and nova-scheduler.log. If you search
for this on the compute nodes in /var/log/nova-*.log, it appears in nova-
network.log and nova-compute.log. If no ERROR or CRITICAL messages appear,
the most recent log entry that reports this may provide a hint about what has gone
wrong.

Adding Custom Logging Statements
If there is not enough information in the existing logs, you may need to add your own
custom logging statements to the nova-* services.

The source files are located in /usr/lib/python2.7/dist-packages/nova.

To add logging statements, the following line should be near the top of the file. For
most files, these should already be there:

from nova.openstack.common import log as logging
LOG = logging.getLogger(__name__)

To add a DEBUG logging statement, you would do:

LOG.debug("This is a custom debugging statement")

You may notice that all the existing logging messages are preceded by an underscore
and surrounded by parentheses, for example:

LOG.debug(_("Logging statement appears here"))

This formatting is used to support translation of logging messages into different lan‐
guages using the gettext internationalization library. You don’t need to do this for
your own custom log messages. However, if you want to contribute the code back to
the OpenStack project that includes logging statements, you must surround your log
messages with underscores and parentheses.

160 | Chapter 13: Logging and Monitoring

www.it-ebooks.info

http://opsgui.de/1eLBlHT
http://www.it-ebooks.info/

RabbitMQ Web Management Interface or rabbitmqctl
Aside from connection failures, RabbitMQ log files are generally not useful for de‐
bugging OpenStack related issues. Instead, we recommend you use the RabbitMQ
web management interface. Enable it on your cloud controller:

/usr/lib/rabbitmq/bin/rabbitmq-plugins enable rabbitmq_management

service rabbitmq-server restart

The RabbitMQ web management interface is accessible on your cloud controller at
http://localhost:55672.

Ubuntu 12.04 installs RabbitMQ version 2.7.1, which uses port
55672. RabbitMQ versions 3.0 and above use port 15672 instead.
You can check which version of RabbitMQ you have running on
your local Ubuntu machine by doing:

$ dpkg -s rabbitmq-server | grep "Version:"
Version: 2.7.1-0ubuntu4

An alternative to enabling the RabbitMQ web management interface is to use the
rabbitmqctl commands. For example, rabbitmqctl list_queues| grep cinder
displays any messages left in the queue. If there are messages, it’s a possible sign that
cinder services didn’t connect properly to rabbitmq and might have to be restarted.

Items to monitor for RabbitMQ include the number of items in each of the queues
and the processing time statistics for the server.

Centrally Managing Logs
Because your cloud is most likely composed of many servers, you must check logs on
each of those servers to properly piece an event together. A better solution is to send
the logs of all servers to a central location so that they can all be accessed from the
same area.

Ubuntu uses rsyslog as the default logging service. Since it is natively able to send logs
to a remote location, you don’t have to install anything extra to enable this feature,
just modify the configuration file. In doing this, consider running your logging over a
management network or using an encrypted VPN to avoid interception.

rsyslog Client Configuration
To begin, configure all OpenStack components to log to syslog in addition to their
standard log file location. Also configure each component to log to a different syslog
facility. This makes it easier to split the logs into individual components on the cen‐
tral server:

RabbitMQ Web Management Interface or rabbitmqctl | 161

www.it-ebooks.info

http://www.it-ebooks.info/

nova.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL0

glance-api.conf and glance-registry.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL1

cinder.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL2

keystone.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL3

By default, Object Storage logs to syslog.

Next, create /etc/rsyslog.d/client.conf with the following line:

. @192.168.1.10

This instructs rsyslog to send all logs to the IP listed. In this example, the IP points to
the cloud controller.

rsyslog Server Configuration
Designate a server as the central logging server. The best practice is to choose a server
that is solely dedicated to this purpose. Create a file called /etc/rsyslog.d/serv
er.conf with the following contents:

Enable UDP
$ModLoad imudp
Listen on 192.168.1.10 only
$UDPServerAddress 192.168.1.10
Port 514
$UDPServerRun 514

Create logging templates for nova
$template NovaFile,"/var/log/rsyslog/%HOSTNAME%/nova.log"
$template NovaAll,"/var/log/rsyslog/nova.log"

Log everything else to syslog.log
$template DynFile,"/var/log/rsyslog/%HOSTNAME%/syslog.log"
. ?DynFile

Log various openstack components to their own individual file
local0.* ?NovaFile
local0.* ?NovaAll
& ~

162 | Chapter 13: Logging and Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

This example configuration handles the nova service only. It first configures rsyslog
to act as a server that runs on port 514. Next, it creates a series of logging templates.
Logging templates control where received logs are stored. Using the last example, a
nova log from c01.example.com goes to the following locations:

• /var/log/rsyslog/c01.example.com/nova.log

• /var/log/rsyslog/nova.log

This is useful, as logs from c02.example.com go to:

• /var/log/rsyslog/c02.example.com/nova.log

• /var/log/rsyslog/nova.log

You have an individual log file for each compute node as well as an aggregated log
that contains nova logs from all nodes.

StackTach
StackTach is a tool created by Rackspace to collect and report the notifications sent by
nova. Notifications are essentially the same as logs but can be much more detailed. A
good overview of notifications can be found at System Usage Data.

To enable nova to send notifications, add the following to nova.conf:

notification_topics=monitor
notification_driver=nova.openstack.common.notifier.rabbit_notifier

Once nova is sending notifications, install and configure StackTach. Since StackTach
is relatively new and constantly changing, installation instructions would quickly be‐
come outdated. Please refer to the StackTach GitHub repo for instructions as well as a
demo video.

Monitoring
There are two types of monitoring: watching for problems and watching usage
trends. The former ensures that all services are up and running, creating a functional
cloud. The latter involves monitoring resource usage over time in order to make in‐
formed decisions about potential bottlenecks and upgrades.

StackTach | 163

www.it-ebooks.info

http://opsgui.de/NPGh3H
http://opsgui.de/1eLBpqQ
http://www.it-ebooks.info/

Nagios
Nagios is an open source monitoring service. It’s capable of executing arbitrary com‐
mands to check the status of server and network services, remotely executing arbitra‐
ry commands directly on servers, and allowing servers to push notifications back in
the form of passive monitoring. Nagios has been around since 1999. Although newer
monitoring services are available, Nagios is a tried-and-true systems administration
staple.

Process Monitoring
A basic type of alert monitoring is to simply check and see whether a required pro‐
cess is running. For example, ensure that the nova-api service is running on the
cloud controller:

ps aux | grep nova-api
nova 12786 0.0 0.0 37952 1312 ? Ss Feb11 0:00 su -s /bin/sh -c exec nova-api
--config-file=/etc/nova/nova.conf nova
nova 12787 0.0 0.1 135764 57400 ? S Feb11 0:01 /usr/bin/python
 /usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12792 0.0 0.0 96052 22856 ? S Feb11 0:01 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12793 0.0 0.3 290688 115516 ? S Feb11 1:23 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12794 0.0 0.2 248636 77068 ? S Feb11 0:04 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
root 24121 0.0 0.0 11688 912 pts/5 S+ 13:07 0:00 grep nova-api

You can create automated alerts for critical processes by using Nagios and NRPE. For
example, to ensure that the nova-compute process is running on compute nodes, cre‐
ate an alert on your Nagios server that looks like this:

define service {
 host_name c01.example.com
 check_command check_nrpe_1arg!check_nova-compute
 use generic-service
 notification_period 24x7
 contact_groups sysadmins
 service_description nova-compute
}

Then on the actual compute node, create the following NRPE configuration:

\command[check_nova-compute]=/usr/lib/nagios/plugins/check_procs -c 1: \
-a nova-compute

Nagios checks that at least one nova-compute service is running at all times.

164 | Chapter 13: Logging and Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Alerting
Resource alerting provides notifications when one or more resources are critically
low. While the monitoring thresholds should be tuned to your specific OpenStack en‐
vironment, monitoring resource usage is not specific to OpenStack at all—any gener‐
ic type of alert will work fine.

Some of the resources that you want to monitor include:

• Disk usage
• Server load
• Memory usage
• Network I/O
• Available vCPUs

For example, to monitor disk capacity on a compute node with Nagios, add the fol‐
lowing to your Nagios configuration:

define service {
 host_name c01.example.com
 check_command check_nrpe!check_all_disks!20% 10%
 use generic-service
 contact_groups sysadmins
 service_description Disk
}

On the compute node, add the following to your NRPE configuration:

command[check_all_disks]=/usr/lib/nagios/plugins/check_disk -w $ARG1$ -c \
$ARG2$ -e

Nagios alerts you with a WARNING when any disk on the compute node is 80 per‐
cent full and CRITICAL when 90 percent is full.

Metering and Telemetry with Ceilometer
An integrated OpenStack project (code-named ceilometer) collects metering data and
provides alerts for Compute, Storage, and Networking. Data collected by the meter‐
ing system could be used for billing. Depending on deployment configuration, me‐
tered data may be accessible to users based on the deployment configuration. The
Telemetry service provides a REST API documented at http://api.openstack.org/api-
ref-telemetry.html. You can read more about the project at http://docs.openstack.org/
developer/ceilometer.

Monitoring | 165

www.it-ebooks.info

http://api.openstack.org/api-ref-telemetry.html
http://api.openstack.org/api-ref-telemetry.html
http://docs.openstack.org/developer/ceilometer
http://docs.openstack.org/developer/ceilometer
http://www.it-ebooks.info/

OpenStack-Specific Resources
Resources such as memory, disk, and CPU are generic resources that all servers (even
non-OpenStack servers) have and are important to the overall health of the server.
When dealing with OpenStack specifically, these resources are important for a second
reason: ensuring that enough are available to launch instances. There are a few ways
you can see OpenStack resource usage. The first is through the nova command:

nova usage-list

This command displays a list of how many instances a tenant has running and some
light usage statistics about the combined instances. This command is useful for a
quick overview of your cloud, but it doesn’t really get into a lot of details.

Next, the nova database contains three tables that store usage information.

The nova.quotas and nova.quota_usages tables store quota information. If a ten‐
ant’s quota is different from the default quota settings, its quota is stored in the
nova.quotas table. For example:

mysql> select project_id, resource, hard_limit from quotas;
+----------------------------------+-----------------------------+------------+
| project_id | resource | hard_limit |
+----------------------------------+-----------------------------+------------+
628df59f091142399e0689a2696f5baa	metadata_items	128
628df59f091142399e0689a2696f5baa	injected_file_content_bytes	10240
628df59f091142399e0689a2696f5baa	injected_files	5
628df59f091142399e0689a2696f5baa	gigabytes	1000
628df59f091142399e0689a2696f5baa	ram	51200
628df59f091142399e0689a2696f5baa	floating_ips	10
628df59f091142399e0689a2696f5baa	instances	10
628df59f091142399e0689a2696f5baa	volumes	10
628df59f091142399e0689a2696f5baa	cores	20
+----------------------------------+-----------------------------+------------+

The nova.quota_usages table keeps track of how many resources the tenant current‐
ly has in use:

mysql> select project_id, resource, in_use from quota_usages where project_id
like '628%';
+----------------------------------+--------------+--------+
| project_id | resource | in_use |
+----------------------------------+--------------+--------+
628df59f091142399e0689a2696f5baa	instances	1
628df59f091142399e0689a2696f5baa	ram	512
628df59f091142399e0689a2696f5baa	cores	1
628df59f091142399e0689a2696f5baa	floating_ips	1
628df59f091142399e0689a2696f5baa	volumes	2
628df59f091142399e0689a2696f5baa	gigabytes	12
628df59f091142399e0689a2696f5baa	images	1
+----------------------------------+--------------+--------+

166 | Chapter 13: Logging and Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

By comparing a tenant’s hard limit with their current resource usage, you can see
their usage percentage. For example, if this tenant is using 1 floating IP out of 10,
then they are using 10 percent of their floating IP quota. Rather than doing the calcu‐
lation manually, you can use SQL or the scripting language of your choice and create
a formatted report:

+----------------------------------+------------+-------------+---------------+
| some_tenant |
+-----------------------------------+------------+------------+---------------+
| Resource | Used | Limit | |
+-----------------------------------+------------+------------+---------------+
cores	1	20	5 %
floating_ips	1	10	10 %
gigabytes	12	1000	1 %
images	1	4	25 %
injected_file_content_bytes	0	10240	0 %
injected_file_path_bytes	0	255	0 %
injected_files	0	5	0 %
instances	1	10	10 %
key_pairs	0	100	0 %
metadata_items	0	128	0 %
ram	512	51200	1 %
reservation_expire	0	86400	0 %
security_group_rules	0	20	0 %
security_groups	0	10	0 %
volumes	2	10	20 %
+-----------------------------------+------------+------------+---------------+

The preceding information was generated by using a custom script that can be found
on GitHub.

This script is specific to a certain OpenStack installation and must
be modified to fit your environment. However, the logic should
easily be transferable.

Intelligent Alerting
Intelligent alerting can be thought of as a form of continuous integration for opera‐
tions. For example, you can easily check to see whether the Image Service is up and
running by ensuring that the glance-api and glance-registry processes are run‐
ning or by seeing whether glace-api is responding on port 9292.

But how can you tell whether images are being successfully uploaded to the Image
Service? Maybe the disk that Image Service is storing the images on is full or the S3
backend is down. You could naturally check this by doing a quick image upload:

Monitoring | 167

www.it-ebooks.info

http://opsgui.de/NPGjbX
http://www.it-ebooks.info/

#!/bin/bash
#
assumes that reasonable credentials have been stored at
/root/auth

. /root/openrc
wget https://launchpad.net/cirros/trunk/0.3.0/+download/ \
 cirros-0.3.0-x86_64-disk.img
glance image-create --name='cirros image' --is-public=true
--container-format=bare --disk-format=qcow2 < cirros-0.3.0-x8
6_64-disk.img

By taking this script and rolling it into an alert for your monitoring system (such as
Nagios), you now have an automated way of ensuring that image uploads to the Im‐
age Catalog are working.

You must remove the image after each test. Even better, test wheth‐
er you can successfully delete an image from the Image Service.

Intelligent alerting takes considerably more time to plan and implement than the oth‐
er alerts described in this chapter. A good outline to implement intelligent alerting is:

• Review common actions in your cloud.
• Create ways to automatically test these actions.
• Roll these tests into an alerting system.

Some other examples for Intelligent Alerting include:

• Can instances launch and be destroyed?
• Can users be created?
• Can objects be stored and deleted?
• Can volumes be created and destroyed?

Trending
Trending can give you great insight into how your cloud is performing day to day.
You can learn, for example, if a busy day was simply a rare occurrence or if you
should start adding new compute nodes.

Trending takes a slightly different approach than alerting. While alerting is interested
in a binary result (whether a check succeeds or fails), trending records the current

168 | Chapter 13: Logging and Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

state of something at a certain point in time. Once enough points in time have been
recorded, you can see how the value has changed over time.

All of the alert types mentioned earlier can also be used for trend reporting. Some
other trend examples include:

• The number of instances on each compute node
• The types of flavors in use
• The number of volumes in use
• The number of Object Storage requests each hour
• The number of nova-api requests each hour
• The I/O statistics of your storage services

As an example, recording nova-api usage can allow you to track the need to scale
your cloud controller. By keeping an eye on nova-api requests, you can determine
whether you need to spawn more nova-api processes or go as far as introducing an
entirely new server to run nova-api. To get an approximate count of the requests,
look for standard INFO messages in /var/log/nova/nova-api.log:

grep INFO /var/log/nova/nova-api.log | wc

You can obtain further statistics by looking for the number of successful requests:

grep " 200 " /var/log/nova/nova-api.log | wc

By running this command periodically and keeping a record of the result, you can
create a trending report over time that shows whether your nova-api usage is in‐
creasing, decreasing, or keeping steady.

A tool such as collectd can be used to store this information. While collectd is out of
the scope of this book, a good starting point would be to use collectd to store the re‐
sult as a COUNTER data type. More information can be found in collectd’s docu‐
mentation.

Summary
For stable operations, you want to detect failure promptly and determine causes effi‐
ciently. With a distributed system, it’s even more important to track the right items to
meet a service-level target. Learning where these logs are located in the file system or
API gives you an advantage. This chapter also showed how to read, interpret, and
manipulate information from OpenStack services so that you can monitor effectively.

Summary | 169

www.it-ebooks.info

http://opsgui.de/1eLBriA
http://opsgui.de/1eLBriA
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Backup and Recovery

Standard backup best practices apply when creating your OpenStack backup policy.
For example, how often to back up your data is closely related to how quickly you
need to recover from data loss.

If you cannot have any data loss at all, you should also focus on a
highly available deployment. The OpenStack High Availability
Guide offers suggestions for elimination of a single point of failure
that could cause system downtime. While it is not a completely
prescriptive document, it offers methods and techniques for avoid‐
ing downtime and data loss.

Other backup considerations include:

• How many backups to keep?
• Should backups be kept off-site?
• How often should backups be tested?

Just as important as a backup policy is a recovery policy (or at least recovery testing).

What to Back Up
While OpenStack is composed of many components and moving parts, backing up
the critical data is quite simple.

This chapter describes only how to back up configuration files and databases that the
various OpenStack components need to run. This chapter does not describe how to
back up objects inside Object Storage or data contained inside Block Storage. Gener‐
ally these areas are left for users to back up on their own.

171

www.it-ebooks.info

http://opsgui.de/1eLAYwS
http://opsgui.de/1eLAYwS
http://www.it-ebooks.info/

Database Backups
The example OpenStack architecture designates the cloud controller as the MySQL
server. This MySQL server hosts the databases for nova, glance, cinder, and keystone.
With all of these databases in one place, it’s very easy to create a database backup:

mysqldump --opt --all-databases > openstack.sql

If you only want to backup a single database, you can instead run:

mysqldump --opt nova > nova.sql

where nova is the database you want to back up.

You can easily automate this process by creating a cron job that runs the following
script once per day:

#!/bin/bash
backup_dir="/var/lib/backups/mysql"
filename="${backup_dir}/mysql-`hostname`-`eval date +%Y%m%d`.sql.gz"
Dump the entire MySQL database
/usr/bin/mysqldump --opt --all-databases | gzip > $filename
Delete backups older than 7 days
find $backup_dir -ctime +7 -type f -delete

This script dumps the entire MySQL database and deletes any backups older than
seven days.

File System Backups
This section discusses which files and directories should be backed up regularly, or‐
ganized by service.

Compute
The /etc/nova directory on both the cloud controller and compute nodes should be
regularly backed up.

/var/log/nova does not need to be backed up if you have all logs going to a central
area. It is highly recommended to use a central logging server or back up the log di‐
rectory.

/var/lib/nova is another important directory to back up. The exception to this is
the /var/lib/nova/instances subdirectory on compute nodes. This subdirectory
contains the KVM images of running instances. You would want to back up this di‐
rectory only if you need to maintain backup copies of all instances. Under most cir‐
cumstances, you do not need to do this, but this can vary from cloud to cloud and
your service levels. Also be aware that making a backup of a live KVM instance can
cause that instance to not boot properly if it is ever restored from a backup.

172 | Chapter 14: Backup and Recovery

www.it-ebooks.info

http://www.it-ebooks.info/

Image Catalog and Delivery
/etc/glance and /var/log/glance follow the same rules as their nova counterparts.

/var/lib/glance should also be backed up. Take special notice of /var/lib/glance/
images. If you are using a file-based backend of glance, /var/lib/glance/images is
where the images are stored and care should be taken.

There are two ways to ensure stability with this directory. The first is to make sure
this directory is run on a RAID array. If a disk fails, the directory is available. The
second way is to use a tool such as rsync to replicate the images to another server:

rsync -az --progress /var/lib/glance/images \
backup-server:/var/lib/glance/images/

Identity
/etc/keystone and /var/log/keystone follow the same rules as other components.

/var/lib/keystone, although it should not contain any data being used, can also be
backed up just in case.

Block Storage
/etc/cinder and /var/log/cinder follow the same rules as other components.

/var/lib/cinder should also be backed up.

Object Storage
/etc/swift is very important to have backed up. This directory contains the swift
configuration files as well as the ring files and ring builder files, which if lost, render
the data on your cluster inaccessible. A best practice is to copy the builder files to all
storage nodes along with the ring files. Multiple backup copies are spread throughout
your storage cluster.

Recovering Backups
Recovering backups is a fairly simple process. To begin, first ensure that the service
you are recovering is not running. For example, to do a full recovery of nova on the
cloud controller, first stop all nova services:

Recovering Backups | 173

www.it-ebooks.info

http://www.it-ebooks.info/

stop nova-api
stop nova-cert
stop nova-consoleauth
stop nova-novncproxy
stop nova-objectstore
stop nova-scheduler

Now you can import a previously backed-up database:

mysql nova < nova.sql

You can also restore backed-up nova directories:

mv /etc/nova{,.orig}
cp -a /path/to/backup/nova /etc/

Once the files are restored, start everything back up:

start mysql
for i in nova-api nova-cert nova-consoleauth nova-novncproxy
nova-objectstore nova-scheduler
> do
> start $i
> done

Other services follow the same process, with their respective directories and
databases.

Summary
Backup and subsequent recovery is one of the first tasks system administrators learn.
However, each system has different items that need attention. By taking care of your
database, image service, and appropriate file system locations, you can be assured that
you can handle any event requiring recovery.

174 | Chapter 14: Backup and Recovery

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Customization

OpenStack might not do everything you need it to do out of the box. To add a new
feature, you can follow different paths.

To take the first path, you can modify the OpenStack code directly. Learn how to con‐
tribute, follow the code review workflow, make your changes, and contribute them
back to the upstream OpenStack project. This path is recommended if the feature you
need requires deep integration with an existing project. The community is always
open to contributions and welcomes new functionality that follows the feature-
development guidelines. This path still requires you to use DevStack for testing your
feature additions, so this chapter walks you through the DevStack environment.

For the second path, you can write new features and plug them in using changes to a
configuration file. If the project where your feature would need to reside uses the
Python Paste framework, you can create middleware for it and plug it in through
configuration. There may also be specific ways of customizing a project, such as cre‐
ating a new scheduler driver for Compute or a custom tab for the dashboard.

This chapter focuses on the second path for customizing OpenStack by providing two
examples for writing new features. The first example shows how to modify Object
Storage (swift) middleware to add a new feature, and the second example provides a
new scheduler feature for OpenStack Compute (nova). To customize OpenStack this
way you need a development environment. The best way to get an environment up
and running quickly is to run DevStack within your cloud.

Create an OpenStack Development Environment
To create a development environment, you can use DevStack. DevStack is essentially
a collection of shell scripts and configuration files that builds an OpenStack develop‐

175

www.it-ebooks.info

http://opsgui.de/NPG68B
http://opsgui.de/NPG68B
http://opsgui.de/1eLB2ww
http://www.it-ebooks.info/

ment environment for you. You use it to create such an environment for developing a
new feature.

You can find all of the documentation at the DevStack website.

To run DevStack for the stable Havana branch on an instance in your OpenStack cloud:

1. Boot an instance from the dashboard or the nova command-line interface (CLI)
with the following parameters:

• Name: devstack-havana
• Image: Ubuntu 12.04 LTS
• Memory Size: 4 GB RAM
• Disk Size: minimum 5 GB

If you are using the nova client, specify --flavor 3 for the nova boot command
to get adequate memory and disk sizes.

2. Log in and set up DevStack. Here’s an example of the commands you can use to
set up DevStack on a virtual machine:
a. Log in to the instance:

$ ssh username@my.instance.ip.address

b. Update the virtual machine’s operating system:
apt-get -y update

c. Install git:
apt-get -y install git

d. Clone the stable/havana branch of the devstack repository:
$ git clone https://github.com/openstack-dev/devstack.git -b
stable/havana devstack/

e. Change to the devstack repository:
$ cd devstack

3. (Optional) If you’ve logged in to your instance as the root user, you must create a
“stack” user; otherwise you’ll run into permission issues. If you’ve logged in as a
user other than root, you can skip these steps:
a. Run the DevStack script to create the stack user:

tools/create-stack-user.sh

b. Give ownership of the devstack directory to the stack user:
chown -R stack:stack /root/devstack

c. Set some permissions you can use to view the DevStack screen later:

176 | Chapter 15: Customization

www.it-ebooks.info

http://opsgui.de/NPG9kK
http://www.it-ebooks.info/

chmod o+rwx /dev/pts/0

d. Switch to the stack user:
$ su stack

4. Edit the localrc configuration file that controls what DevStack will deploy. Copy
the example localrc file at the end of this section (Example 15-1):

$ vim localrc

5. Run the stack script that will install OpenStack:
$./stack.sh

6. When the stack script is done, you can open the screen session it started to view
all of the running OpenStack services:

$ screen -r stack

7. Press Ctrl+A followed by 0 to go to the first screen window.

• The stack.sh script takes a while to run. Perhaps you can take
this opportunity to join the OpenStack Foundation.

• Screen is a useful program for viewing many related services at
once. For more information, see the GNU screen quick refer‐
ence.

Now that you have an OpenStack development environment, you’re free to hack
around without worrying about damaging your production deployment.
Example 15-1 provides a working environment for running OpenStack Identity,
Compute, Block Storage, Image Service, the OpenStack dashboard, and Object Stor‐
age with the stable/havana branches as the starting point.

Example 15-1. localrc

Credentials
ADMIN_PASSWORD=devstack
MYSQL_PASSWORD=devstack
RABBIT_PASSWORD=devstack
SERVICE_PASSWORD=devstack
SERVICE_TOKEN=devstack

OpenStack Identity Service branch
KEYSTONE_BRANCH=stable/havana

OpenStack Compute branch
NOVA_BRANCH=stable/havana

Create an OpenStack Development Environment | 177

www.it-ebooks.info

http://opsgui.de/1eLB5bJ
http://opsgui.de/NPG9Bi
http://opsgui.de/NPG9Bi
http://www.it-ebooks.info/

OpenStack Block Storage branch
CINDER_BRANCH=stable/havana

OpenStack Image Service branch
GLANCE_BRANCH=stable/havana

OpenStack Dashboard branch
HORIZON_BRANCH=stable/havana

OpenStack Object Storage branch
SWIFT_BRANCH=stable/havana

enable_service swift

Object Storage Settings
SWIFT_HASH=66a3d6b56c1f479c8b4e70ab5c2000f5
SWIFT_REPLICAS=1

Block Storage Setting
VOLUME_BACKING_FILE_SIZE=20480M

Output
LOGFILE=/opt/stack/logs/stack.sh.log
VERBOSE=True
LOG_COLOR=False
SCREEN_LOGDIR=/opt/stack/logs

Customizing Object Storage (Swift) Middleware
OpenStack Object Storage, known as swift when reading the code, is based on the
Python Paste framework. The best introduction to its architecture is A Do-It-Yourself
Framework. Because of the swift project’s use of this framework, you are able to add
features to a project by placing some custom code in a project’s pipeline without hav‐
ing to change any of the core code.

Imagine a scenario where you have public access to one of your containers, but what
you really want is to restrict access to that to a set of IPs based on a whitelist. In this
example, we’ll create a piece of middleware for swift that allows access to a container
from only a set of IP addresses, as determined by the container’s metadata items. On‐
ly those IP addresses that you explicitly whitelist using the container’s metadata will
be able to access the container.

This example is for illustrative purposes only. It should not be used
as a container IP whitelist solution without further development
and extensive security testing.

178 | Chapter 15: Customization

www.it-ebooks.info

http://opsgui.de/1eLB8Ew
http://opsgui.de/NPG8xl
http://opsgui.de/NPG8xl
http://www.it-ebooks.info/

When you join the screen session that stack.sh starts with screen -r stack, you
see a screen for each service running, which can be a few or several, depending on
how many services you configured DevStack to run.

The asterisk * indicates which screen window you are viewing. This example shows
we are viewing the key (for keystone) screen window:

0$ shell 1$ key* 2$ horizon 3$ s-proxy 4$ s-object 5$ s-container 6$ s-
account

The purpose of the screen windows are as follows:

shell

A shell where you can get some work done

key*

The keystone service

horizon

The horizon dashboard web application

s-{name}

The swift services

To create the middleware and plug it in through Paste configuration:

1. Change to the directory where Object Storage is installed:
$ cd /opt/stack/swift

2. Create the ip_whitelist.py Python source code file:
$ vim swift/common/middleware/ip_whitelist.py

3. Copy the code in Example 15-2 into ip_whitelist.py. The following code is a
middleware example that restricts access to a container based on IP address as
explained at the beginning of the section. Middleware passes the request on to
another application. This example uses the swift “swob” library to wrap Web
Server Gateway Interface (WSGI) requests and responses into objects for swift to
interact with. When you’re done, save and close the file.

Example 15-2. ip_whitelist.py

vim: tabstop=4 shiftwidth=4 softtabstop=4
Copyright (c) 2014 OpenStack Foundation
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#

Customizing Object Storage (Swift) Middleware | 179

www.it-ebooks.info

http://www.it-ebooks.info/

http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

import socket

from swift.common.utils import get_logger
from swift.proxy.controllers.base import get_container_info
from swift.common.swob import Request, Response

class IPWhitelistMiddleware(object):
 """
 IP Whitelist Middleware

 Middleware that allows access to a container from only a set of IP
 addresses as determined by the container's metadata items that start
 with the prefix 'allow'. E.G. allow-dev=192.168.0.20
 """

 def __init__(self, app, conf, logger=None):
 self.app = app

 if logger:
 self.logger = logger
 else:
 self.logger = get_logger(conf, log_route='ip_whitelist')

 self.deny_message = conf.get('deny_message', "IP Denied")
 self.local_ip = socket.gethostbyname(socket.gethostname())

 def __call__(self, env, start_response):
 """
 WSGI entry point.
 Wraps env in swob.Request object and passes it down.

 :param env: WSGI environment dictionary
 :param start_response: WSGI callable
 """
 req = Request(env)

 try:
 version, account, container, obj = req.split_path(1, 4, True)
 except ValueError:
 return self.app(env, start_response)

 container_info = get_container_info(
 req.environ, self.app, swift_source='IPWhitelistMiddleware')

180 | Chapter 15: Customization

www.it-ebooks.info

http://www.it-ebooks.info/

 remote_ip = env['REMOTE_ADDR']
 self.logger.debug("Remote IP: %(remote_ip)s",
 {'remote_ip': remote_ip})

 meta = container_info['meta']
 allow = {k:v for k,v in meta.iteritems() if k.startswith('allow')}
 allow_ips = set(allow.values())
 allow_ips.add(self.local_ip)
 self.logger.debug("Allow IPs: %(allow_ips)s",
 {'allow_ips': allow_ips})

 if remote_ip in allow_ips:
 return self.app(env, start_response)
 else:
 self.logger.debug(
 "IP %(remote_ip)s denied access to Account=%(account)s "
 "Container=%(container)s. Not in %(allow_ips)s", locals())
 return Response(
 status=403,
 body=self.deny_message,
 request=req)(env, start_response)

def filter_factory(global_conf, **local_conf):
 """
 paste.deploy app factory for creating WSGI proxy apps.
 """
 conf = global_conf.copy()
 conf.update(local_conf)

 def ip_whitelist(app):
 return IPWhitelistMiddleware(app, conf)
 return ip_whitelist

There is a lot of useful information in env and conf that you can use to decide
what to do with the request. To find out more about what properties are avail‐
able, you can insert the following log statement into the __init__ method:

self.logger.debug("conf = %(conf)s", locals())

and the following log statement into the __call__ method:
self.logger.debug("env = %(env)s", locals())

4. To plug this middleware into the swift Paste pipeline, you edit one configuration
file, /etc/swift/proxy-server.conf:

$ vim /etc/swift/proxy-server.conf

5. Find the [filter:ratelimit] section in /etc/swift/proxy-server.conf, and
copy in the following configuration section after it:

[filter:ip_whitelist]
paste.filter_factory = swift.common.middleware.ip_whitelist:filter_factory

Customizing Object Storage (Swift) Middleware | 181

www.it-ebooks.info

http://www.it-ebooks.info/

You can override the default log routing for this filter here:
set log_name = ratelimit
set log_facility = LOG_LOCAL0
set log_level = INFO
set log_headers = False
set log_address = /dev/log
deny_message = You shall not pass!

6. Find the [pipeline:main] section in /etc/swift/proxy-server.conf, and add
ip_whitelist after ratelimit to the list like so. When you’re done, save and close
the file:

[pipeline:main]
pipeline = catch_errors healthcheck proxy-logging cache bulk slo ratelimit
ip_whitelist ...

7. Restart the swift proxy service to make swift use your middleware. Start by
switching to the swift-proxy screen:
a. Press Ctrl+A followed by 3.
b. Press Ctrl+C to kill the service.
c. Press Up Arrow to bring up the last command.
d. Press Enter to run it.

8. Test your middleware with the swift CLI. Start by switching to the shell screen
and finish by switching back to the swift-proxy screen to check the log output:
a. Press Ctrl+A followed by 0.
b. Make sure you’re in the devstack directory:

$ cd /root/devstack

c. Source openrc to set up your environment variables for the CLI:
$ source openrc

d. Create a container called middleware-test:
$ swift post middleware-test

e. Press Ctrl+A followed by 3 to check the log output.
9. Among the log statements you’ll see the lines:

proxy-server Remote IP: my.instance.ip.address (txn: ...)
proxy-server Allow IPs: set(['my.instance.ip.address']) (txn: ...)

These two statements are produced by our middleware and show that the request
was sent from our DevStack instance and was allowed.

10. Test the middleware from outside DevStack on a remote machine that has access
to your DevStack instance:
a. Install the keystone and swift clients on your local machine:

182 | Chapter 15: Customization

www.it-ebooks.info

http://www.it-ebooks.info/

pip install python-keystoneclient python-swiftclient

b. Attempt to list the objects in the middleware-test container:
$ swift --os-auth-url=http://my.instance.ip.address:5000/v2.0/ \
--os-region-name=RegionOne --os-username=demo:demo \
--os-password=devstack list middleware-test
Container GET failed: http://my.instance.ip.address:8080/v1/AUTH_.../
 middleware-test?format=json 403 Forbidden You shall not pass!

11. Press Ctrl+A followed by 3 to check the log output. Look at the swift log state‐
ments again, and among the log statements, you’ll see the lines:

proxy-server Authorizing from an overriding middleware (i.e: tempurl)
(txn: ...)
proxy-server ... IPWhitelistMiddleware
proxy-server Remote IP: my.local.ip.address (txn: ...)
proxy-server Allow IPs: set(['my.instance.ip.address']) (txn: ...)
proxy-server IP my.local.ip.address denied access to Account=AUTH_... \
 Container=None. Not in set(['my.instance.ip.address']) (txn: ...)

Here we can see that the request was denied because the remote IP address wasn’t
in the set of allowed IPs.

12. Back in your DevStack instance on the shell screen, add some metadata to your
container to allow the request from the remote machine:
a. Press Ctrl+A followed by 0.
b. Add metadata to the container to allow the IP:

$ swift post --meta allow-dev:my.local.ip.address middleware-test

c. Now try the command from Step 10 again and it succeeds. There are no ob‐
jects in the container, so there is nothing to list; however, there is also no error
to report.

Functional testing like this is not a replacement for proper unit and
integration testing, but it serves to get you started.

You can follow a similar pattern in other projects that use the Python Paste frame‐
work. Simply create a middleware module and plug it in through configuration. The
middleware runs in sequence as part of that project’s pipeline and can call out to oth‐
er services as necessary. No project core code is touched. Look for a pipeline value
in the project’s conf or ini configuration files in /etc/<project> to identify projects
that use Paste.

Customizing Object Storage (Swift) Middleware | 183

www.it-ebooks.info

http://www.it-ebooks.info/

When your middleware is done, we encourage you to open source it and let the com‐
munity know on the OpenStack mailing list. Perhaps others need the same function‐
ality. They can use your code, provide feedback, and possibly contribute. If enough
support exists for it, perhaps you can propose that it be added to the official swift
middleware.

Customizing the OpenStack Compute (nova) Scheduler
Many OpenStack projects allow for customization of specific features using a driver
architecture. You can write a driver that conforms to a particular interface and plug it
in through configuration. For example, you can easily plug in a new scheduler for
Compute. The existing schedulers for Compute are feature full and well documented
at Scheduling. However, depending on your user’s use cases, the existing schedulers
might not meet your requirements. You might need to create a new scheduler.

To create a scheduler, you must inherit from the class nova.scheduler.driver.Sched
uler. Of the five methods that you can override, you must override the two methods
marked with an asterisk (*) below:

• update_service_capabilities

• hosts_up

• group_hosts

• * schedule_run_instance
• * select_destinations

To demonstrate customizing OpenStack, we’ll create an example of a Compute sched‐
uler that randomly places an instance on a subset of hosts, depending on the originat‐
ing IP address of the request and the prefix of the hostname. Such an example could
be useful when you have a group of users on a subnet and you want all of their in‐
stances to start within some subset of your hosts.

This example is for illustrative purposes only. It should not be used
as a scheduler for Compute without further development and
testing.

When you join the screen session that stack.sh starts with screen -r stack, you
are greeted with many screen windows:

0$ shell* 1$ key 2$ horizon ... 9$ n-api ... 14$ n-sch ...

184 | Chapter 15: Customization

www.it-ebooks.info

http://opsgui.de/1eLB87p
http://opsgui.de/NPGaFk
http://www.it-ebooks.info/

shell

A shell where you can get some work done

key

The keystone service

horizon

The horizon dashboard web application

n-{name}

The nova services

n-sch

The nova scheduler service

To create the scheduler and plug it in through configuration:

1. The code for OpenStack lives in /opt/stack, so go to the nova directory and edit
your scheduler module. Change to the directory where nova is installed:

$ cd /opt/stack/nova

2. Create the ip_scheduler.py Python source code file:
$ vim nova/scheduler/ip_scheduler.py

3. The code in Example 15-3 is a driver that will schedule servers to hosts based on
IP address as explained at the beginning of the section. Copy the code into
ip_scheduler.py. When you’re done, save and close the file.

Example 15-3. ip_scheduler.py

vim: tabstop=4 shiftwidth=4 softtabstop=4
Copyright (c) 2014 OpenStack Foundation
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""
IP Scheduler implementation
"""

Customizing the OpenStack Compute (nova) Scheduler | 185

www.it-ebooks.info

http://www.it-ebooks.info/

import random

from oslo.config import cfg

from nova.compute import rpcapi as compute_rpcapi
from nova import exception
from nova.openstack.common import log as logging
from nova.openstack.common.gettextutils import _
from nova.scheduler import driver

CONF = cfg.CONF
CONF.import_opt('compute_topic', 'nova.compute.rpcapi')
LOG = logging.getLogger(__name__)

class IPScheduler(driver.Scheduler):
 """
 Implements Scheduler as a random node selector based on
 IP address and hostname prefix.
 """

 def __init__(self, *args, **kwargs):
 super(IPScheduler, self).__init__(*args, **kwargs)
 self.compute_rpcapi = compute_rpcapi.ComputeAPI()

 def _filter_hosts(self, request_spec, hosts, filter_properties,
 hostname_prefix):
 """Filter a list of hosts based on hostname prefix."""

 hosts = [host for host in hosts if host.startswith(hostname_prefix)]
 return hosts

 def _schedule(self, context, topic, request_spec, filter_properties):
 """Picks a host that is up at random."""

 elevated = context.elevated()
 hosts = self.hosts_up(elevated, topic)
 if not hosts:
 msg = _("Is the appropriate service running?")
 raise exception.NoValidHost(reason=msg)

 remote_ip = context.remote_address

 if remote_ip.startswith('10.1'):
 hostname_prefix = 'doc'
 elif remote_ip.startswith('10.2'):
 hostname_prefix = 'ops'
 else:
 hostname_prefix = 'dev'

 hosts = self._filter_hosts(request_spec, hosts, filter_properties,
 hostname_prefix)

186 | Chapter 15: Customization

www.it-ebooks.info

http://www.it-ebooks.info/

 if not hosts:
 msg = _("Could not find another compute")
 raise exception.NoValidHost(reason=msg)

 host = random.choice(hosts)
 LOG.debug("Request from %(remote_ip)s scheduled to %(host)s" % locals())

 return host

 def select_destinations(self, context, request_spec, filter_properties):
 """Selects random destinations."""
 num_instances = request_spec['num_instances']
 # NOTE(timello): Returns a list of dicts with 'host', 'nodename' and
 # 'limits' as keys for compatibility with filter_scheduler.
 dests = []
 for i in range(num_instances):
 host = self._schedule(context, CONF.compute_topic,
 request_spec, filter_properties)
 host_state = dict(host=host, nodename=None, limits=None)
 dests.append(host_state)

 if len(dests) < num_instances:
 raise exception.NoValidHost(reason='')
 return dests

 def schedule_run_instance(self, context, request_spec,
 admin_password, injected_files,
 requested_networks, is_first_time,
 filter_properties, legacy_bdm_in_spec):
 """Create and run an instance or instances."""
 instance_uuids = request_spec.get('instance_uuids')
 for num, instance_uuid in enumerate(instance_uuids):
 request_spec['instance_properties']['launch_index'] = num
 try:
 host = self._schedule(context, CONF.compute_topic,
 request_spec, filter_properties)
 updated_instance = driver.instance_update_db(context,
 instance_uuid)
 self.compute_rpcapi.run_instance(context,
 instance=updated_instance, host=host,
 requested_networks=requested_networks,
 injected_files=injected_files,
 admin_password=admin_password,
 is_first_time=is_first_time,
 request_spec=request_spec,
 filter_properties=filter_properties,
 legacy_bdm_in_spec=legacy_bdm_in_spec)
 except Exception as ex:
 # NOTE(vish): we don't reraise the exception here to make sure
 # that all instances in the request get set to
 # error properly

Customizing the OpenStack Compute (nova) Scheduler | 187

www.it-ebooks.info

http://www.it-ebooks.info/

 driver.handle_schedule_error(context, ex, instance_uuid,
 request_spec)

There is a lot of useful information in context, request_spec, and filter_prop
erties that you can use to decide where to schedule the instance. To find out
more about what properties are available, you can insert the following log state‐
ments into the schedule_run_instance method of the scheduler above:

LOG.debug("context = %(context)s" % {'context': context.__dict__})
LOG.debug("request_spec = %(request_spec)s" % locals())
LOG.debug("filter_properties = %(filter_properties)s" % locals())

4. To plug this scheduler into nova, edit one configuration file, /etc/nova/
nova.conf:

$ vim /etc/nova/nova.conf

5. Find the scheduler_driver config and change it like so:
scheduler_driver=nova.scheduler.ip_scheduler.IPScheduler

6. Restart the nova scheduler service to make nova use your scheduler. Start by
switching to the n-sch screen:
a. Press Ctrl+A followed by 9.
b. Press Ctrl+A followed by N until you reach the n-sch screen.
c. Press Ctrl+C to kill the service.
d. Press Up Arrow to bring up the last command.
e. Press Enter to run it.

7. Test your scheduler with the nova CLI. Start by switching to the shell screen and
finish by switching back to the n-sch screen to check the log output:
a. Press Ctrl+A followed by 0.
b. Make sure you’re in the devstack directory:

$ cd /root/devstack

c. Source openrc to set up your environment variables for the CLI:
$ source openrc

d. Put the image ID for the only installed image into an environment variable:
$ IMAGE_ID=`nova image-list | egrep cirros | egrep -v "kernel|ramdisk" |
awk '{print $2}'`

e. Boot a test server:
$ nova boot --flavor 1 --image $IMAGE_ID scheduler-test

8. Switch back to the n-sch screen. Among the log statements, you’ll see the line:

188 | Chapter 15: Customization

www.it-ebooks.info

http://www.it-ebooks.info/

2014-01-23 19:57:47.262 DEBUG nova.scheduler.ip_scheduler \
[req-... demo demo] Request from 162.242.221.84 \
scheduled to devstack-havana \
_schedule /opt/stack/nova/nova/scheduler/ip_scheduler.py:76

Functional testing like this is not a replacement for proper unit and
integration testing, but it serves to get you started.

A similar pattern can be followed in other projects that use the driver architecture.
Simply create a module and class that conform to the driver interface and plug it in
through configuration. Your code runs when that feature is used and can call out to
other services as necessary. No project core code is touched. Look for a “driver” value
in the project’s .conf configuration files in /etc/<project> to identify projects that
use a driver architecture.

When your scheduler is done, we encourage you to open source it and let the com‐
munity know on the OpenStack mailing list. Perhaps others need the same function‐
ality. They can use your code, provide feedback, and possibly contribute. If enough
support exists for it, perhaps you can propose that it be added to the official Compute
schedulers.

Customizing the Dashboard (Horizon)
The dashboard is based on the Python Django web application framework. The best
guide to customizing it has already been written and can be found at Building on Ho‐
rizon.

Conclusion
When operating an OpenStack cloud, you may discover that your users can be quite
demanding. If OpenStack doesn’t do what your users need, it may be up to you to
fulfill those requirements. This chapter provided you with some options for customi‐
zation and gave you the tools you need to get started.

Customizing the Dashboard (Horizon) | 189

www.it-ebooks.info

http://opsgui.de/1eLBbA1
http://opsgui.de/NPGbZX
http://opsgui.de/1eLBcnE
http://opsgui.de/1eLBcnE
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Upstream OpenStack

OpenStack is founded on a thriving community that is a source of help and welcomes
your contributions. This chapter details some of the ways you can interact with the
others involved.

Getting Help
There are several avenues available for seeking assistance. The quickest way is to help
the community help you. Search the Q&A sites, mailing list archives, and bug lists for
issues similar to yours. If you can’t find anything, follow the directions for reporting
bugs or use one of the channels for support, which are listed below.

Your first port of call should be the official OpenStack documentation, found on
http://docs.openstack.org. You can get questions answered on http://ask.openstack.org.

Mailing lists are also a great place to get help. The wiki page has more information
about the various lists. As an operator, the main lists you should be aware of are:

General list
openstack@lists.openstack.org. The scope of this list is the current state of Open‐
Stack. This is a very high-traffic mailing list, with many, many emails per day.

Operators list
openstack-operators@lists.openstack.org. This list is intended for discussion
among existing OpenStack cloud operators, such as yourself. Currently, this list is
relatively low traffic, on the order of one email a day.

Development list
openstack-dev@lists.openstack.org. The scope of this list is the future state of
OpenStack. This is a high-traffic mailing list, with multiple emails per day.

191

www.it-ebooks.info

http://docs.openstack.org
http://ask.openstack.org
http://opsgui.de/NPGELC
http://opsgui.de/1eLBZoy
http://opsgui.de/NPGF2c
http://opsgui.de/1eLC2Rk
http://www.it-ebooks.info/

We recommend that you subscribe to the general list and the operator list, although
you must set up filters to manage the volume for the general list. You’ll also find links
to the mailing list archives on the mailing list wiki page, where you can search
through the discussions.

Multiple IRC channels are available for general questions and developer discussions.
The general discussion channel is #openstack on irc.freenode.net.

Reporting Bugs
As an operator, you are in a very good position to report unexpected behavior with
your cloud. Since OpenStack is flexible, you may be the only individual to report a
particular issue. Every issue is important to fix, so it is essential to learn how to easily
submit a bug report.

All OpenStack projects use Launchpad for bug tracking. You’ll need to create an ac‐
count on Launchpad before you can submit a bug report.

Once you have a Launchpad account, reporting a bug is as simple as identifying the
project or projects that are causing the issue. Sometimes this is more difficult than
expected, but those working on the bug triage are happy to help relocate issues if they
are not in the right place initially:

• Report a bug in nova.
• Report a bug in python-novaclient.
• Report a bug in swift.
• Report a bug in python-swiftclient.
• Report a bug in glance.
• Report a bug in python-glanceclient.
• Report a bug in keystone.
• Report a bug in python-keystoneclient.
• Report a bug in neutron.
• Report a bug in python-neutronclient.
• Report a bug in cinder.
• Report a bug in python-cinderclient.
• Report a bug in horizon.
• Report a bug with the documentation.
• Report a bug with the API documentation.

192 | Chapter 16: Upstream OpenStack

www.it-ebooks.info

http://opsgui.de/NPGIuU
http://opsgui.de/1eLC2ku
http://opsgui.de/NPGLa0
http://opsgui.de/1eLC3Vv
http://opsgui.de/NPGMea
http://opsgui.de/1eLC4Zu
http://opsgui.de/NPGOmf
http://opsgui.de/1eLC8bQ
http://opsgui.de/NPGRhX
http://opsgui.de/1eLC8Z6
http://opsgui.de/NPGSm2
http://opsgui.de/1eLC9ME
http://opsgui.de/NPGTGy
http://opsgui.de/1eLCcs7
http://opsgui.de/NPGUdz
http://opsgui.de/1eLCcZ8
http://opsgui.de/NPGUKx
http://www.it-ebooks.info/

To write a good bug report, the following process is essential. First, search for the bug
to make sure there is no bug already filed for the same issue. If you find one, be sure
to click on “This bug affects X people. Does this bug affect you?” If you can’t find the
issue, then enter the details of your report. It should at least include:

• The release, or milestone, or commit ID corresponding to the software that you
are running

• The operating system and version where you’ve identified the bug
• Steps to reproduce the bug, including what went wrong
• Description of the expected results instead of what you saw
• Portions of your log files so that you include only relevant excerpts

When you do this, the bug is created with:

• Status: New

In the bug comments, you can contribute instructions on how to fix a given bug, and
set it to Triaged. Or you can directly fix it: assign the bug to yourself, set it to In pro‐
gress, branch the code, implement the fix, and propose your change for merging. But
let’s not get ahead of ourselves; there are bug triaging tasks as well.

Confirming and Prioritizing
This stage is about checking that a bug is real and assessing its impact. Some of these
steps require bug supervisor rights (usually limited to core teams). If the bug lacks
information to properly reproduce or assess the importance of the bug, the bug is set
to:

• Status: Incomplete

Once you have reproduced the issue (or are 100 percent confident that this is indeed
a valid bug) and have permissions to do so, set:

• Status: Confirmed

Core developers also prioritize the bug, based on its impact:

• Importance: <Bug impact>

The bug impacts are categorized as follows:

Reporting Bugs | 193

www.it-ebooks.info

http://www.it-ebooks.info/

1. Critical if the bug prevents a key feature from working properly (regression) for
all users (or without a simple workaround) or results in data loss

2. High if the bug prevents a key feature from working properly for some users (or
with a workaround)

3. Medium if the bug prevents a secondary feature from working properly
4. Low if the bug is mostly cosmetic
5. Wishlist if the bug is not really a bug but rather a welcome change in behavior

If the bug contains the solution, or a patch, set the bug status to Triaged.

Bug Fixing
At this stage, a developer works on a fix. During that time, to avoid duplicating the
work, the developer should set:

• Status: In Progress
• Assignee: <yourself>

When the fix is ready, the developer proposes a change and gets the change reviewed.

After the Change Is Accepted
After the change is reviewed, accepted, and lands in master, it automatically moves to:

• Status: Fix Committed

When the fix makes it into a milestone or release branch, it automatically moves to:

• Milestone: Milestone the bug was fixed in
• Status: Fix Released

Join the OpenStack Community
Since you’ve made it this far in the book, you should consider becoming an official
individual member of the community and join the OpenStack Foundation. The
OpenStack Foundation is an independent body providing shared resources to help
achieve the OpenStack mission by protecting, empowering, and promoting Open‐
Stack software and the community around it, including users, developers, and the en‐
tire ecosystem. We all share the responsibility to make this community the best it can
possibly be, and signing up to be a member is the first step to participating. Like the

194 | Chapter 16: Upstream OpenStack

www.it-ebooks.info

http://opsgui.de/1eLCejs
http://www.it-ebooks.info/

software, individual membership within the OpenStack Foundation is free and acces‐
sible to anyone.

How to Contribute to the Documentation
OpenStack documentation efforts encompass operator and administrator docs, API
docs, and user docs.

The genesis of this book was an in-person event, but now that the book is in your
hands, we want you to contribute to it. OpenStack documentation follows the coding
principles of iterative work, with bug logging, investigating, and fixing.

Just like the code, http://docs.openstack.org is updated constantly using the Gerrit re‐
view system, with source stored in GitHub in the openstack-manuals repository and
the api-site repository, in DocBook format.

To review the documentation before it’s published, go to the OpenStack Gerrit server
at http://review.openstack.org and search for project:openstack/openstack-manuals or
project:openstack/api-site.

See the How To Contribute page on the wiki for more information on the steps you
need to take to submit your first documentation review or change.

Security Information
As a community, we take security very seriously and follow a specific process for re‐
porting potential issues. We vigilantly pursue fixes and regularly eliminate exposures.
You can report security issues you discover through this specific process. The Open‐
Stack Vulnerability Management Team is a very small group of experts in vulnerabili‐
ty management drawn from the OpenStack community. The team’s job is facilitating
the reporting of vulnerabilities, coordinating security fixes and handling progressive
disclosure of the vulnerability information. Specifically, the team is responsible for
the following functions:

Vulnerability management
All vulnerabilities discovered by community members (or users) can be reported
to the team.

Vulnerability tracking
The team will curate a set of vulnerability related issues in the issue tracker. Some
of these issues are private to the team and the affected product leads, but once
remediation is in place, all vulnerabilities are public.

How to Contribute to the Documentation | 195

www.it-ebooks.info

http://docs.openstack.org
http://opsgui.de/1eLCf75
http://opsgui.de/NPGYda
http://review.openstack.org
http://opsgui.de/NPGXpV
http://opsgui.de/1eLClM1
http://opsgui.de/NPG68B
http://www.it-ebooks.info/

Responsible disclosure
As part of our commitment to work with the security community, the team en‐
sures that proper credit is given to security researchers who responsibly report
issues in OpenStack.

We provide two ways to report issues to the OpenStack Vulnerability Management
Team, depending on how sensitive the issue is:

• Open a bug in Launchpad and mark it as a “security bug.” This makes the bug
private and accessible to only the Vulnerability Management Team.

• If the issue is extremely sensitive, send an encrypted email to one of the team’s
members. Find their GPG keys at OpenStack Security.

You can find the full list of security-oriented teams you can join at Security Teams.
The vulnerability management process is fully documented at Vulnerability Manage‐
ment.

Finding Additional Information
In addition to this book, there are many other sources of information about Open‐
Stack. The OpenStack website is a good starting point, with OpenStack
Docs and OpenStack API Docs providing technical documentation about OpenStack.
The OpenStack wiki contains a lot of general information that cuts across the Open‐
Stack projects, including a list of recommended tools. Finally, there are a number of
blogs aggregated at Planet OpenStack.

196 | Chapter 16: Upstream OpenStack

www.it-ebooks.info

http://opsgui.de/1eLCkaQ
http://opsgui.de/NPGZxO
http://opsgui.de/1eLCkYk
http://opsgui.de/1eLCkYk
http://opsgui.de/NPGZOt
http://opsgui.de/NPFTC8
http://opsgui.de/NPFTC8
http://opsgui.de/1eLAlDq
http://opsgui.de/1eLCrDo
http://opsgui.de/NPH3hd
http://opsgui.de/1eLCsXY
http://www.it-ebooks.info/

CHAPTER 17

Advanced Configuration

OpenStack is intended to work well across a variety of installation flavors, from very
small private clouds to large public clouds. To achieve this, the developers add config‐
uration options to their code that allow the behavior of the various components to be
tweaked depending on your needs. Unfortunately, it is not possible to cover all possi‐
ble deployments with the default configuration values.

At the time of writing, OpenStack has more than 1,500 configuration options. You
can see them documented at the OpenStack configuration reference guide. This chap‐
ter cannot hope to document all of these, but we do try to introduce the important
concepts so that you know where to go digging for more information.

Differences Between Various Drivers
Many OpenStack projects implement a driver layer, and each of these drivers will im‐
plement its own configuration options. For example, in OpenStack Compute (nova),
there are various hypervisor drivers implemented—libvirt, xenserver, hyper-v, and
vmware, for example. Not all of these hypervisor drivers have the same features, and
each has different tuning requirements.

The currently implemented hypervisors are listed on the Open‐
Stack documentation website. You can see a matrix of the various
features in OpenStack Compute (nova) hypervisor drivers on the
OpenStack wiki at the Hypervisor support matrix page.

The point we are trying to make here is that just because an option exists doesn’t
mean that option is relevant to your driver choices. Normally, the documentation
notes which drivers the configuration applies to.

197

www.it-ebooks.info

http://opsgui.de/1eLATt4
http://opsgui.de/1eLAwP2
http://opsgui.de/1eLAwP2
http://opsgui.de/NPFQ9w
http://www.it-ebooks.info/

Implementing Periodic Tasks
Another common concept across various OpenStack projects is that of periodic tasks.
Periodic tasks are much like cron jobs on traditional Unix systems, but they are run
inside an OpenStack process. For example, when OpenStack Compute (nova) needs
to work out what images it can remove from its local cache, it runs a periodic task to
do this.

Periodic tasks are important to understand because of limitations in the threading
model that OpenStack uses. OpenStack uses cooperative threading in Python, which
means that if something long and complicated is running, it will block other tasks in‐
side that process from running unless it voluntarily yields execution to another coop‐
erative thread.

A tangible example of this is the nova-compute process. In order to manage the image
cache with libvirt, nova-compute has a periodic process that scans the contents of the
image cache. Part of this scan is calculating a checksum for each of the images and
making sure that checksum matches what nova-compute expects it to be. However,
images can be very large, and these checksums can take a long time to generate. At
one point, before it was reported as a bug and fixed, nova-compute would block on
this task and stop responding to RPC requests. This was visible to users as failure of
operations such as spawning or deleting instances.

The take away from this is if you observe an OpenStack process that appears to “stop”
for a while and then continue to process normally, you should check that periodic
tasks aren’t the problem. One way to do this is to disable the periodic tasks by setting
their interval to zero. Additionally, you can configure how often these periodic tasks
run—in some cases, it might make sense to run them at a different frequency from
the default.

The frequency is defined separately for each periodic task. Therefore, to disable every
periodic task in OpenStack Compute (nova), you would need to set a number of con‐
figuration options to zero. The current list of configuration options you would need
to set to zero are:

• bandwidth_poll_interval

• sync_power_state_interval

• heal_instance_info_cache_interval

• host_state_interval

• image_cache_manager_interval

• reclaim_instance_interval

• volume_usage_poll_interval

198 | Chapter 17: Advanced Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

• shelved_poll_interval

• shelved_offload_time

• instance_delete_interval

To set a configuration option to zero, include a line such as image_cache_manager_in
terval=0 in your nova.conf file.

This list will change between releases, so please refer to your configuration guide for
up-to-date information.

Specific Configuration Topics
This section covers specific examples of configuration options you might consider
tuning. It is by no means an exhaustive list.

Security Configuration for Compute, Networking, and Storage
The OpenStack Security Guide provides a deep dive into securing an OpenStack
cloud, including SSL/TLS, key management, PKI and certificate management, data
transport and privacy concerns, and compliance.

High Availability
The OpenStack High Availability Guide offers suggestions for elimination of a single
point of failure that could cause system downtime. While it is not a completely pre‐
scriptive document, it offers methods and techniques for avoiding downtime and da‐
ta loss.

Enabling IPv6 Support
The Havana release with OpenStack Networking (neutron) does not offer complete
support of IPv6. Better support is planned for the Icehouse release. You can follow
along the progress being made by watching the neutron IPv6 Subteam at work.

By modifying your configuration setup, you can set up IPv6 when using nova-
network for networking, and a tested setup is documented for FlatDHCP and a
multi-host configuration. The key is to make nova-network think a radvd command
ran successfully. The entire configuration is detailed in a Cybera blog post, “An IPv6
enabled cloud”.

Periodic Task Frequency for Compute
Before the Grizzly release, the frequency of periodic tasks was specified in seconds
between runs. This meant that if the periodic task took 30 minutes to run and the

Specific Configuration Topics | 199

www.it-ebooks.info

http://opsgui.de/NPG4NW
http://opsgui.de/1eLAYwS
http://opsgui.de/NPG5kQ
http://opsgui.de/1eLB0F2
http://opsgui.de/1eLB0F2
http://www.it-ebooks.info/

frequency was set to hourly, then the periodic task actually ran every 90 minutes, be‐
cause the task would wait an hour after running before running again. This changed
in Grizzly, and we now time the frequency of periodic tasks from the start of the work
the task does. So, our 30 minute periodic task will run every hour, with a 30 minute
wait between the end of the first run and the start of the next.

Geographical Considerations for Object Storage
Enhanced support for global clustering of object storage servers continues to be add‐
ed since the Grizzly (1.8.0) release, when regions were introduced. You would imple‐
ment these global clusters to ensure replication across geographic areas in case of a
natural disaster and also to ensure that users can write or access their objects more
quickly based on the closest data center. You configure a default region with one zone
for each cluster, but be sure your network (WAN) can handle the additional request
and response load between zones as you add more zones and build a ring that han‐
dles more zones. Refer to Geographically Distributed Clusters in the documentation
for additional information.

200 | Chapter 17: Advanced Configuration

www.it-ebooks.info

http://opsgui.de/NPG6FJ
http://www.it-ebooks.info/

CHAPTER 18

Upgrades

With the exception of Object Storage, upgrading from one version of OpenStack to
another can take a great deal of effort. Until the situation improves, this chapter pro‐
vides some guidance on the operational aspects that you should consider for per‐
forming an upgrade based on detailed steps for a basic architecture.

Pre-Upgrade Testing Environment
Probably the most important step of all is the pre-upgrade testing. Especially if you
are upgrading immediately after release of a new version, undiscovered bugs might
hinder your progress. Some deployers prefer to wait until the first point release is an‐
nounced. However, if you have a significant deployment, you might follow the devel‐
opment and testing of the release, thereby ensuring that bugs for your use cases are
fixed.

Each OpenStack cloud is different, and as a result, even with what may seem a near-
identical architecture to this guide, you must still test upgrades between versions in
your environment. For this, you need an approximate clone of your environment.

However, that is not to say that it needs to be the same size or use identical hardware
as the production environment—few of us have that luxury. It is important to consid‐
er the hardware and scale of the cloud you are upgrading, but here are some tips to
avoid that incredible cost:

Use your own cloud
The simplest place to start testing the next version of OpenStack is by setting up
a new environment inside your own cloud. This may seem odd—especially the
double virtualization used in running compute nodes—but it’s a sure way to very
quickly test your configuration.

201

www.it-ebooks.info

http://www.it-ebooks.info/

Use a public cloud
Especially because your own cloud is unlikely to have sufficient space to scale test
to the level of the entire cloud, consider using a public cloud to test the scalability
limits of your cloud controller configuration. Most public clouds bill by the hour,
which means it can be inexpensive to perform even a test with many nodes.

Make another storage endpoint on the same system
If you use an external storage plug-in or shared file system with your cloud, in
many cases, it’s possible to test that it works by creating a second share or end‐
point. This will enable you to test the system before entrusting the new version
onto your storage.

Watch the network
Even at smaller-scale testing, it should be possible to determine whether some‐
thing is going horribly wrong in intercomponent communication if you look at
the network packets and see too many.

To actually set up the test environment, there are several methods. Some prefer to do
a full manual install using the OpenStack Installation Guides and then see what the
final configuration files look like and which packages were installed. Others prefer to
create a clone of their automated configuration infrastructure with changed package
repository URLs and then alter the configuration until it starts working. Either ap‐
proach is valid, and which you use depends on experience.

An upgrade pre-testing system is excellent for getting the configuration to work;
however, it is important to note that the historical use of the system and differences in
user interaction can affect the success of upgrades, too. We’ve seen experiences where
database migrations encountered a bug (later fixed!) because of slight table differ‐
ences between fresh Grizzly installs and those that migrated from Folsom to Grizzly.

Artificial scale testing can go only so far. Once your cloud is upgraded, you’ll also
need to pay careful attention to the performance aspects of your cloud.

Preparing for a Rollback
Like all major system upgrades, your upgrade could fail for one or more difficult-to-
determine reasons. You should prepare for this situation by leaving the ability to roll
back your environment to the previous release, including databases, configuration
files, and packages. We provide an example process for rolling back your environ‐
ment in “Rolling Back a Failed Upgrade”.

202 | Chapter 18: Upgrades

www.it-ebooks.info

http://opsgui.de/NPFTC8
http://www.it-ebooks.info/

Upgrades
The upgrade process generally follows these steps:

1. Perform some “cleaning” of the environment prior to starting the upgrade pro‐
cess to ensure a consistent state. For example, instances not fully purged from the
system after deletion may cause indeterminate behavior.

2. Read the release notes and documentation.
3. Find incompatibilities between your versions.
4. Develop an upgrade procedure and assess it thoroughly using a test environment

similar to your production environment.
5. Run the upgrade procedure on the production environment.

You can perform an upgrade with operational instances, but this strategy can be dan‐
gerous. You might consider using live migration to temporarily relocate instances to
other compute nodes while performing upgrades. However, you must ensure data‐
base consistency throughout the process; otherwise your environment may become
unstable. Also, don’t forget to provide sufficient notice to your users, including giving
them plenty of time to perform their own backups.

The following order for service upgrades seems the most successful:

1. Upgrade the OpenStack Identity Service (keystone).
2. Upgrade the OpenStack Image Service (glance).
3. Upgrade OpenStack Compute (nova), including networking components.
4. Upgrade OpenStack Block Storage (cinder).
5. Upgrade the OpenStack dashboard.

The general upgrade process includes the following steps:

1. Create a backup of configuration files and databases.
2. Update the configuration files according to the release notes.
3. Upgrade the packages using your distribution’s package manager.
4. Stop services, update database schemas, and restart services.
5. Verify proper operation of your environment.

Upgrades | 203

www.it-ebooks.info

http://www.it-ebooks.info/

How to Perform an Upgrade from Grizzly to Havana—
Ubuntu
For this section, we assume that you are starting with the architecture provided in the
OpenStack Installation Guide and upgrading to the same architecture for Havana. All
nodes should run Ubuntu 12.04 LTS. This section primarily addresses upgrading core
OpenStack services, such as the Identity Service (keystone); Image Service (glance);
Compute (nova), including networking; Block Storage (cinder); and the dashboard.

Impact on Users
The upgrade process will interrupt management of your environment, including the
dashboard. If you properly prepare for this upgrade, tenant instances will continue to
operate normally.

Upgrade Considerations
Always review the release notes before performing an upgrade to learn about newly
available features that you may want to enable and deprecated features that you
should disable.

Perform a Backup
Save the configuration files on all nodes, as shown here:

for i in keystone glance nova cinder openstack-dashboard
> do mkdir $i-grizzly
> done
for i in keystone glance nova cinder openstack-dashboard
> do cp -r /etc/$i/* $i-grizzly/
> done

You can modify this example script on each node to handle differ‐
ent services.

Back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database \
--all-databases > grizzly-db-backup.sql

Manage Repositories
On all nodes, remove the repository for Grizzly packages and add the repository for
Havana packages:

204 | Chapter 18: Upgrades

www.it-ebooks.info

http://opsgui.de/NPGunp
http://opsgui.de/1eLzHFY
http://www.it-ebooks.info/

apt-add-repository -r cloud-archive:grizzly
apt-add-repository cloud-archive:havana

Make sure any automatic updates are disabled.

Update Configuration Files
Update the glance configuration on the controller node for compatibility with
Havana.

If not currently present and configured as follows, add or modify the following keys
in /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf:

[keystone_authtoken]
auth_uri = http://controller:5000
auth_host = controller
admin_tenant_name = service
admin_user = glance
admin_password = GLANCE_PASS

[paste_deploy]
flavor = keystone

If currently present, remove the following key from the [filter:authtoken] section
in /etc/glance/glance-api-paste.ini and /etc/glance/glance-registry-

paste.ini:

[filter:authtoken]
flavor = keystone

Update the nova configuration on all nodes for compatibility with Havana.

Add the new [database] section and associated key to /etc/nova/nova.conf:

[database]
connection = mysql://nova:NOVA_DBPASS@controller/nova

Remove defunct configuration from the [DEFAULT] section in /etc/nova/nova.conf:

[DEFAULT]
sql_connection = mysql://nova:NOVA_DBPASS@controller/nova

If not already present and configured as follows, add or modify the following keys
in /etc/nova/nova.conf:

[keystone_authtoken]
auth_uri = http://controller:5000/v2.0
auth_host = controller
auth_port = 35357

How to Perform an Upgrade from Grizzly to Havana—Ubuntu | 205

www.it-ebooks.info

http://www.it-ebooks.info/

auth_protocol = http
admin_tenant_name = service
admin_user = nova
admin_password = NOVA_PASS

On all compute nodes, increase the DHCP lease time (measured in seconds) in /etc/
nova/nova.conf to enable currently active instances to continue leasing their IP ad‐
dresses during the upgrade process:

[DEFAULT]
dhcp_lease_time = 86400

Setting this value too high may cause more dynamic environments
to run out of available IP addresses. Use an appropriate value for
your environment.

You must restart dnsmasq and the networking component of Compute to enable the
new DHCP lease time:

pkill -9 dnsmasq
service nova-network restart

Update the Cinder configuration on the controller and storage nodes for compatibili‐
ty with Havana.

Add the new [database] section and associated key to /etc/cinder/cinder.conf:

[database]
connection = mysql://cinder:CINDER_DBPASS@controller/cinder

Remove defunct configuration from the [DEFAULT] section in /etc/cinder/

cinder.conf:

[DEFAULT]
sql_connection = mysql://cinder:CINDER_DBPASS@controller/cinder

If not currently present and configured as follows, add or modify the following key
in /etc/cinder/cinder.conf:

[keystone_authtoken]
auth_uri = http://controller:5000

Update the dashboard configuration on the controller node for compatibility with
Havana.

The dashboard installation procedure and configuration file changed substantially
between Grizzly and Havana. Particularly, if you are running Django 1.5 or later, you
must ensure that /etc/openstack-dashboard/local_settings contains a correctly

206 | Chapter 18: Upgrades

www.it-ebooks.info

http://www.it-ebooks.info/

configured ALLOWED_HOSTS key that contains a list of hostnames recognized by the
dashboard.

If users will access your dashboard using http://dashboard.example.com, you would
set:

ALLOWED_HOSTS=['dashboard.example.com']

If users will access your dashboard on the local system, you would set:

ALLOWED_HOSTS=['localhost']

If users will access your dashboard using an IP address in addition to a hostname,
you would set:

ALLOWED_HOSTS=['dashboard.example.com', '192.168.122.200']

Upgrade Packages on the Controller Node
Upgrade packages on the controller node to Havana, as shown below:

apt-get update
apt-get dist-upgrade

Depending on your specific configuration, performing a dist-
upgrade may restart services supplemental to your OpenStack en‐
vironment. For example, if you use Open-iSCSI for Block Storage
volumes and the upgrade includes a new open-scsi package, the
package manager will restart Open-iSCSI services, which may
cause the volumes for your users to be disconnected.

The package manager will ask you about updating various configuration files. We
recommend denying these changes. The package manager will append .dpkg-dist to
the end of newer versions of existing configuration files. You should consider adopt‐
ing conventions associated with the newer configuration files and merging them with
your existing configuration files after completing the upgrade process.

Stop Services, Update Database Schemas, and Restart Services on the
Controller Node
Stop each service, run the database synchronization command if necessary to update
the associated database schema, and restart each service to apply the new configura‐
tion. Some services require additional commands:

OpenStack Identity
service keystone stop
keystone-manage token_flush
keystone-manage db_sync
service keystone start

How to Perform an Upgrade from Grizzly to Havana—Ubuntu | 207

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Image Service
service glance-api stop
service glance-registry stop
glance-manage db_sync
service glance-api start
service glance-registry start

OpenStack Compute
service nova-api stop
service nova-scheduler stop
service nova-conductor stop
service nova-cert stop
service nova-consoleauth stop
service nova-novncproxy stop
nova-manage db sync
service nova-api start
service nova-scheduler start
service nova-conductor start
service nova-cert start
service nova-consoleauth start
service nova-novncproxy start

OpenStack Block Storage
service cinder-api stop
service cinder-scheduler stop
cinder-manage db sync
service cinder-api start
service cinder-scheduler start

The controller node update is complete. Now you can upgrade the compute nodes.

Upgrade Packages and Restart Services on the Compute Nodes
Upgrade packages on the compute nodes to Havana:

apt-get update
apt-get dist-upgrade

Make sure you have removed the repository for Grizzly packages
and added the repository for Havana packages.

208 | Chapter 18: Upgrades

www.it-ebooks.info

http://www.it-ebooks.info/

Due to a packaging issue, this command may fail with the follow‐
ing error:

Errors were encountered while processing:
 /var/cache/apt/archives/
 qemu-utils_1.5.0+dfsg-3ubuntu5~cloud0_amd64.deb
 /var/cache/apt/archives/
 qemu-system-common_1.5.0+dfsg-3ubuntu5~cloud0_
 amd64.deb
 E: Sub-process /usr/bin/dpkg
 returned an error code (1)

You can fix this issue by using the following command:
apt-get -f install

The packaging system will ask about updating the /etc/nova/api-paste.ini file. As
with the controller upgrade, we recommend denying these changes and reviewing
the .dpkg-dist file after completing the upgrade process.

To restart compute services:

service nova-compute restart
service nova-network restart
service nova-api-metadata restart

Upgrade Packages and Restart Services on the Block Storage Nodes
Upgrade packages on the storage nodes to Havana:

apt-get update
apt-get dist-upgrade

Make sure you have removed the repository for Grizzly packages
and added the repository for Havana packages.

The packaging system will ask about updating the /etc/cinder/api-paste.ini file.
Like the controller upgrade, we recommend denying these changes and reviewing
the .dpkg-dist file after completing the upgrade process.

How to Perform an Upgrade from Grizzly to Havana—Ubuntu | 209

www.it-ebooks.info

http://www.it-ebooks.info/

To restart Block Storage services:

service cinder-volume restart

How to Perform an Upgrade from Grizzly to Havana—Red
Hat Enterprise Linux and Derivatives
For this section, we assume that you are starting with the architecture provided in the
OpenStack Installation Guide and upgrading to the same architecture for Havana. All
nodes should run Red Hat Enterprise Linux 6.4 or compatible derivatives. Newer mi‐
nor releases should also work. This section primarily addresses upgrading core Open‐
Stack services, such as the Identity Service (keystone); Image Service (glance); Com‐
pute (nova), including networking; Block Storage (cinder); and the dashboard.

Impact on Users
The upgrade process will interrupt management of your environment, including the
dashboard. If you properly prepare for this upgrade, tenant instances will continue to
operate normally.

Upgrade Considerations
Always review the release notes before performing an upgrade to learn about newly
available features that you may want to enable and deprecated features that you
should disable.

Perform a Backup
First, save the configuration files on all nodes:

for i in keystone glance nova cinder openstack-dashboard
> do mkdir $i-grizzly
> done
for i in keystone glance nova cinder openstack-dashboard
> do cp -r /etc/$i/* $i-grizzly/
> done

You can modify this example script on each node to handle differ‐
ent services.

Next, back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database \
 --all-databases > grizzly-db-backup.sql

210 | Chapter 18: Upgrades

www.it-ebooks.info

http://opsgui.de/NPGvrs
http://opsgui.de/1eLzHFY
http://www.it-ebooks.info/

Manage Repositories
On all nodes, remove the repository for Grizzly packages and add the repository for
Havana packages:

yum erase rdo-release-grizzly
yum install http://repos.fedorapeople.org/repos/openstack/openstack-havana/ \
rdo-release-havana-7.noarch.rpm

Make sure any automatic updates are disabled.

Consider checking for newer versions of the Havana repository.

Update Configuration Files
Update the glance configuration on the controller node for compatibility with
Havana.

If not currently present and configured as follows, add or modify the following keys
in /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf:

openstack-config --set /etc/glance/glance-api.conf keystone_authtoken \
 auth_uri http://controller:5000
openstack-config --set /etc/glance/glance-api.conf keystone_authtoken \
 auth_host controller
openstack-config --set /etc/glance/glance-api.conf keystone_authtoken \
 admin_tenant_name service
openstack-config --set /etc/glance/glance-api.conf keystone_authtoken \
 admin_user glance
openstack-config --set /etc/glance/glance-api.conf keystone_authtoken \
 admin_password GLANCE_PASS
openstack-config --set /etc/glance/glance-api.conf paste_deploy \
 flavor keystone

openstack-config --set /etc/glance/glance-registry.conf keystone_authtoken \
 auth_uri http://controller:5000
openstack-config --set /etc/glance/glance-registry.conf keystone_authtoken \
 auth_host controller
openstack-config --set /etc/glance/glance-registry.conf keystone_authtoken \
 admin_tenant_name service
openstack-config --set /etc/glance/glance-registry.conf keystone_authtoken \
 admin_user glance
openstack-config --set /etc/glance/glance-registry.conf keystone_authtoken \

How to Perform an Upgrade from Grizzly to Havana—Red Hat Enterprise Linux and Derivatives | 211

www.it-ebooks.info

http://opsgui.de/1eLBXNB
http://www.it-ebooks.info/

 admin_password GLANCE_PASS
openstack-config --set /etc/glance/glance-registry.conf paste_deploy \
 flavor keystone

If currently present, remove the following key from the [filter:authtoken] section
in /etc/glance/glance-api-paste.ini and /etc/glance/glance-registry-

paste.ini:

[filter:authtoken]
flavor = keystone

Update the nova configuration on all nodes for compatibility with Havana.

Add the new [database] section and associated key to /etc/nova/nova.conf:

openstack-config --set /etc/nova/nova.conf database \
 connection mysql://nova:NOVA_DBPASS@controller/nova

Remove defunct database configuration from /etc/nova/nova.conf:

openstack-config --del /etc/nova/nova.conf DEFAULT sql_connection

If not already present and configured as follows, add or modify the following keys
in /etc/nova/nova.conf:

openstack-config --set /etc/nova/nova.conf keystone_authtoken \
 auth_uri http://controller:5000/v2.0
openstack-config --set /etc/nova/nova.conf keystone_authtoken \
 auth_host controller
openstack-config --set /etc/nova/nova.conf keystone_authtoken \
 admin_tenant_name service
openstack-config --set /etc/nova/nova.conf keystone_authtoken \
 admin_user nova
openstack-config --set /etc/nova/nova.conf keystone_authtoken \
 admin_password NOVA_PASS

On all compute nodes, increase the DHCP lease time (measured in seconds) in /etc/
nova/nova.conf to enable currently active instances to continue leasing their IP ad‐
dresses during the upgrade process, as shown here:

openstack-config --set /etc/nova/nova.conf DEFAULT \
 dhcp_lease_time 86400

Setting this value too high may cause more dynamic environments
to run out of available IP addresses. Use an appropriate value for
your environment.

212 | Chapter 18: Upgrades

www.it-ebooks.info

http://www.it-ebooks.info/

You must restart dnsmasq and the nova networking service to enable the new DHCP
lease time:

pkill -9 dnsmasq
service openstack-nova-network restart

Update the cinder configuration on the controller and storage nodes for compatibility
with Havana.

Add the new [database] section and associated key to /etc/cinder/cinder.conf:

openstack-config --set /etc/cinder/cinder.conf database \
 connection mysql://cinder:CINDER_DBPASS@controller/cinder

Remove defunct database configuration from /etc/cinder/cinder.conf:

openstack-config --del /etc/cinder/cinder.conf DEFAULT sql_connection

If not currently present and configured as follows, add or modify the following key
in /etc/cinder/cinder.conf:

openstack-config --set /etc/cinder/cinder.conf keystone_authtoken \
 auth_uri http://controller:5000

Update the dashboard configuration on the controller node for compatibility with
Havana.

The dashboard installation procedure and configuration file changed substantially
between Grizzly and Havana. Particularly, if you are running Django 1.5 or later, you
must ensure that /etc/openstack-dashboard/local_settings contains a correctly
configured ALLOWED_HOSTS key that contains a list of hostnames recognized by the
dashboard.

If users will access your dashboard using http://dashboard.example.com, you would
set:

ALLOWED_HOSTS=['dashboard.example.com']

If users will access your dashboard on the local system, you would set:

ALLOWED_HOSTS=['localhost']

If users will access your dashboard using an IP address in addition to a hostname,
you would set:

ALLOWED_HOSTS=['dashboard.example.com', '192.168.122.200']

Upgrade Packages on the Controller Node
Upgrade packages on the controller node to Havana:

yum upgrade

How to Perform an Upgrade from Grizzly to Havana—Red Hat Enterprise Linux and Derivatives | 213

www.it-ebooks.info

http://www.it-ebooks.info/

Some services may terminate with an error during the package up‐
grade process. If this may cause a problem with your environment,
consider stopping all services before upgrading them to Havana.

Install the OpenStack SELinux package on the controller node:

yum install openstack-selinux

The package manager will append .rpmnew to the end of newer ver‐
sions of existing configuration files. You should consider adopting
conventions associated with the newer configuration files and
merging them with your existing configuration files after complet‐
ing the upgrade process.

Stop Services, Update Database Schemas, and Restart Services on the
Controller Node
Stop each service, run the database synchronization command if necessary to update
the associated database schema, and restart each service to apply the new configura‐
tion. Some services require additional commands:

OpenStack Identity
service openstack-keystone stop
keystone-manage token_flush
keystone-manage db_sync
service openstack-keystone start

OpenStack Image Service
service openstack-glance-api stop
service openstack-glance-registry stop
glance-manage db_sync
service openstack-glance-api start
service openstack-glance-registry start

OpenStack Compute
service openstack-nova-api stop
service openstack-nova-scheduler stop
service openstack-nova-conductor stop
service openstack-nova-cert stop
service openstack-nova-consoleauth stop
service openstack-nova-novncproxy stop
nova-manage db sync
service openstack-nova-api start
service openstack-nova-scheduler start
service openstack-nova-conductor start
service openstack-nova-cert start
service openstack-nova-consoleauth start
service openstack-nova-novncproxy start

214 | Chapter 18: Upgrades

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Block Storage
service openstack-cinder-api stop
service openstack-cinder-scheduler stop
cinder-manage db sync
service openstack-cinder-api start
service openstack-cinder-scheduler start

The controller node update is complete. Now you can upgrade the compute nodes.

Upgrade Packages and Restart Services on the Compute Nodes
Upgrade packages on the compute nodes to Havana:

yum upgrade

Make sure you have removed the repository for Grizzly packages
and added the repository for Havana packages.

Install the OpenStack SELinux package on the compute nodes:

yum install openstack-selinux

Restart compute services:

service openstack-nova-compute restart
service openstack-nova-network restart
service openstack-nova-metadata-api restart

Upgrade Packages and Restart Services on the Block Storage Nodes
Upgrade packages on the storage nodes to Havana:

yum upgrade

Make sure you have removed the repository for Grizzly packages
and added the repository for Havana packages.

Install the OpenStack SELinux package on the storage nodes:

yum install openstack-selinux

Restart Block Storage services:

service openstack-cinder-volume restart

How to Perform an Upgrade from Grizzly to Havana—Red Hat Enterprise Linux and Derivatives | 215

www.it-ebooks.info

http://www.it-ebooks.info/

Cleaning Up and Final Configuration File Updates
On all distributions, you need to perform some final tasks to complete the upgrade
process.

Decrease DHCP timeouts by modifying /etc/nova/nova.conf on the compute no‐
des back to the original value for your environment.

Update all of the .ini files to match passwords and pipelines as required for Havana
in your environment.

After a migration, your users will see different results from nova image-list and
glance image-list unless you match up policies for access to private images. To do
so, edit /etc/glance/policy.json and /etc/nova/policy.json to contain "con
text_is_admin": "role:admin", which limits access to private images for projects.

Thoroughly test the environment, and then let your users know that their cloud is
running normally again.

Rolling Back a Failed Upgrade
While we do not wish this fate upon anyone, upgrades involve complex operations
and can fail. This section provides guidance for rolling back to a previous release of
OpenStack. Although only tested on Ubuntu, other distributions follow a similar
procedure.

In this section, we consider only the most immediate case: you have taken down pro‐
duction management services in preparation for an upgrade, completed part of the
upgrade process, discovered one or more problems not encountered during testing,
and need to roll back your environment to the original “known good” state. We
specifically assume that you did not make any state changes after attempting the up‐
grade process: no new instances, networks, storage volumes, etc.

Within this scope, you need to accomplish three main steps to successfully roll back
your environment:

• Roll back configuration files
• Roll back databases
• Roll back packages

The upgrade instructions provided in earlier sections ensure that you have proper
backups of your databases and configuration files. You should read through this sec‐
tion carefully and verify that you have the requisite backups to restore. Rolling back
upgrades is a tricky process because distributions tend to put much more effort into
testing upgrades than downgrades. Broken downgrades often take significantly more

216 | Chapter 18: Upgrades

www.it-ebooks.info

http://www.it-ebooks.info/

effort to troubleshoot and, hopefully, resolve than broken upgrades. Only you can
weigh the risks of trying to push a failed upgrade forward versus rolling it back. Gen‐
erally, we consider rolling back the very last option.

The following steps described for Ubuntu have worked on at least one production en‐
vironment, but they may not work for all environments.

Perform the rollback from Havana to Grizzly

1. Stop all OpenStack services.
2. Copy contents of configuration backup directories /etc/<service>.grizzly

that you created during the upgrade process back to /etc/<service>:
3. Restore databases from the backup file grizzly-db-backup.sql that you created

with mysqldump during the upgrade process:
mysql -u root -p < grizzly-db-backup.sql

If you created this backup using the --add-drop-database flag as instructed, you
can proceed to the next step. If you omitted this flag, MySQL will revert all of the
tables that existed in Grizzly, but not drop any tables created during the database
migration for Havana. In this case, you need to manually determine which tables
should not exist and drop them to prevent issues with your next upgrade
attempt.

4. Downgrade OpenStack packages.

We consider downgrading packages by far the most complicat‐
ed step; it is highly dependent on the distribution as well as
overall administration of the system.

a. Determine the OpenStack packages installed on your system. This is done us‐
ing dpkg --get-selections, filtering for OpenStack packages, filtering again
to omit packages explicitly marked in the deinstall state, and saving the final
output to a file. For example, the following command covers a controller node
with keystone, glance, nova, neutron, and cinder:

dpkg --get-selections | grep -e keystone -e glance -e nova -e neutron \
-e cinder | grep -v deinstall | tee openstack-selections
cinder-api install
cinder-common install
cinder-scheduler install
cinder-volume install
glance install
glance-api install
glance-common install
glance-registry install

Rolling Back a Failed Upgrade | 217

www.it-ebooks.info

http://www.it-ebooks.info/

neutron-common install
neutron-dhcp-agent install
neutron-l3-agent install
neutron-lbaas-agent install
neutron-metadata-agent install
neutron-plugin-openvswitch install
neutron-plugin-openvswitch-agent install
neutron-server install
nova-api install
nova-cert install
nova-common install
nova-conductor install
nova-consoleauth install
nova-novncproxy install
nova-objectstore install
nova-scheduler install
python-cinder install
python-cinderclient install
python-glance install
python-glanceclient install
python-keystone install
python-keystoneclient install
python-neutron install
python-neutronclient install
python-nova install
python-novaclient install

Depending on the type of server, the contents and order of
your package list may vary from this example.

b. You can determine the package versions available for reversion by using apt-
cache policy. If you removed the Grizzly repositories, you must first reinstall
them and run apt-get update:

apt-cache policy nova-common
nova-common:
 Installed: 1:2013.2-0ubuntu1~cloud0
 Candidate: 1:2013.2-0ubuntu1~cloud0
 Version table:
 *** 1:2013.2-0ubuntu1~cloud0 0

500 http://ubuntu-cloud.archive.canonical.com/ubuntu/
precise-updates/havana/main amd64 Packages

100 /var/lib/dpkg/status
 1:2013.1.4-0ubuntu1~cloud0 0

500 http://ubuntu-cloud.archive.canonical.com/ubuntu/
precise-updates/grizzly/main amd64 Packages

 2012.1.3+stable-20130423-e52e6912-0ubuntu1.2 0
500 http://us.archive.ubuntu.com/ubuntu/

218 | Chapter 18: Upgrades

www.it-ebooks.info

http://www.it-ebooks.info/

 precise-updates/main amd64 Packages
 500 http://security.ubuntu.com/ubuntu/
 precise-security/main amd64 Packages
 2012.1-0ubuntu2 0
 500 http://us.archive.ubuntu.com/ubuntu/
 precise/main amd64 Packages

This tells us the currently installed version of the package, newest candidate
version, and all versions along with the repository that contains each version.
Look for the appropriate Grizzly version—1:2013.1.4-0ubuntu1~cloud0 in
this case. The process of manually picking through this list of packages is rath‐
er tedious and prone to errors. You should consider using the following script
to help with this process:

for i in `cut -f 1 openstack-selections | sed 's/neutron/quantum/;'`;
 do echo -n $i ;apt-cache policy $i | grep -B 1 grizzly |
 grep -v Packages | awk '{print "="$1}';done | tr '\n' ' ' |
 tee openstack-grizzly-versions
cinder-api=1:2013.1.4-0ubuntu1~cloud0
cinder-common=1:2013.1.4-0ubuntu1~cloud0
cinder-scheduler=1:2013.1.4-0ubuntu1~cloud0
cinder-volume=1:2013.1.4-0ubuntu1~cloud0
glance=1:2013.1.4-0ubuntu1~cloud0
glance-api=1:2013.1.4-0ubuntu1~cloud0
glance-common=1:2013.1.4-0ubuntu1~cloud0
glance-registry=1:2013.1.4-0ubuntu1~cloud0
quantum-common=1:2013.1.4-0ubuntu1~cloud0
quantum-dhcp-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-l3-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-lbaas-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-metadata-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-plugin-openvswitch=1:2013.1.4-0ubuntu1~cloud0
quantum-plugin-openvswitch-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-server=1:2013.1.4-0ubuntu1~cloud0
nova-api=1:2013.1.4-0ubuntu1~cloud0
nova-cert=1:2013.1.4-0ubuntu1~cloud0
nova-common=1:2013.1.4-0ubuntu1~cloud0
nova-conductor=1:2013.1.4-0ubuntu1~cloud0
nova-consoleauth=1:2013.1.4-0ubuntu1~cloud0
nova-novncproxy=1:2013.1.4-0ubuntu1~cloud0
nova-objectstore=1:2013.1.4-0ubuntu1~cloud0
nova-scheduler=1:2013.1.4-0ubuntu1~cloud0
python-cinder=1:2013.1.4-0ubuntu1~cloud0
python-cinderclient=1:1.0.3-0ubuntu1~cloud0
python-glance=1:2013.1.4-0ubuntu1~cloud0
python-glanceclient=1:0.9.0-0ubuntu1.2~cloud0
python-quantum=1:2013.1.4-0ubuntu1~cloud0
python-quantumclient=1:2.2.0-0ubuntu1~cloud0
python-nova=1:2013.1.4-0ubuntu1~cloud0
python-novaclient=1:2.13.0-0ubuntu1~cloud0

Rolling Back a Failed Upgrade | 219

www.it-ebooks.info

http://www.it-ebooks.info/

If you decide to continue this step manually, don’t forget to
change neutron to quantum where applicable.

c. Use apt-get install to install specific versions of each package by specifying
<package-name>=<version>. The script in the previous step conveniently cre‐
ated a list of package=version pairs for you:

apt-get install `cat openstack-grizzly-versions`

This completes the rollback procedure. You should remove the Havana repos‐
itory and run apt-get update to prevent accidental upgrades until you solve
whatever issue caused you to roll back your environment.

220 | Chapter 18: Upgrades

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Use Cases

This appendix contains a small selection of use cases from the community, with more
technical detail than usual. Further examples can be found on the OpenStack website.

NeCTAR
Who uses it: researchers from the Australian publicly funded research sector. Use is
across a wide variety of disciplines, with the purpose of instances ranging from run‐
ning simple web servers to using hundreds of cores for high-throughput computing.

Deployment
Using OpenStack Compute cells, the NeCTAR Research Cloud spans eight sites with
approximately 4,000 cores per site.

Each site runs a different configuration, as resource cells in an OpenStack Compute
cells setup. Some sites span multiple data centers, some use off compute node storage
with a shared file system, and some use on compute node storage with a nonshared
file system. Each site deploys the Image Service with an Object Storage backend. A
central Identity Service, dashboard, and Compute API service are used. A login to the
dashboard triggers a SAML login with Shibboleth, which creates an account in the
Identity Service with an SQL backend.

Compute nodes have 24 to 48 cores, with at least 4 GB of RAM per core and approxi‐
mately 40 GB of ephemeral storage per core.

All sites are based on Ubuntu 12.04, with KVM as the hypervisor. The OpenStack
version in use is typically the current stable version, with 5 to 10 percent back-ported
code from trunk and modifications. Migration to Ubuntu 14.04 is planned as part of
the Havana to Icehouse upgrade.

221

www.it-ebooks.info

http://opsgui.de/1eLAdUw
http://www.it-ebooks.info/

Resources
• OpenStack.org case study
• NeCTAR-RC GitHub
• NeCTAR website

MIT CSAIL
Who uses it: researchers from the MIT Computer Science and Artificial Intelligence
Lab.

Deployment
The CSAIL cloud is currently 64 physical nodes with a total of 768 physical cores and
3,456 GB of RAM. Persistent data storage is largely outside the cloud on NFS, with
cloud resources focused on compute resources. There are more than 130 users in
more than 40 projects, typically running 2,000–2,500 vCPUs in 300 to 400 instances.

We initially deployed on Ubuntu 12.04 with the Essex release of OpenStack using
FlatDHCP multi-host networking.

The software stack is still Ubuntu 12.04 LTS, but now with OpenStack Havana from
the Ubuntu Cloud Archive. KVM is the hypervisor, deployed using FAI and Puppet
for configuration management. The FAI and Puppet combination is used lab-wide,
not only for OpenStack. There is a single cloud controller node, which also acts as
network controller, with the remainder of the server hardware dedicated to compute
nodes.

Host aggregates and instance-type extra specs are used to provide two different re‐
source allocation ratios. The default resource allocation ratios we use are 4:1 CPU and
1.5:1 RAM. Compute-intensive workloads use instance types that require non-
oversubscribed hosts where cpu_ratio and ram_ratio are both set to 1.0. Since we
have hyperthreading enabled on our compute nodes, this provides one vCPU per
CPU thread, or two vCPUs per physical core.

With our upgrade to Grizzly in August 2013, we moved to OpenStack Networking
Service, neutron (quantum at the time). Compute nodes have two-gigabit network
interfaces and a separate management card for IPMI management. One network in‐
terface is used for node-to-node communications. The other is used as a trunk port
for OpenStack managed VLANs. The controller node uses two bonded 10g network
interfaces for its public IP communications. Big pipes are used here because images
are served over this port, and it is also used to connect to iSCSI storage, backending
the image storage and database. The controller node also has a gigabit interface that is

222 | Appendix A: Use Cases

www.it-ebooks.info

http://opsgui.de/NPFCiF
http://opsgui.de/1eLAhnd
http://opsgui.de/NPFEHm
http://opsgui.de/1eLAhUr
http://www.it-ebooks.info/

used in trunk mode for OpenStack managed VLAN traffic. This port handles traffic
to the dhcp-agent and metadata-proxy.

We approximate the older nova-network multi-host HA setup by using “provider
vlan networks” that connect instances directly to existing publicly addressable net‐
works and use existing physical routers as their default gateway. This means that if
our network controller goes down, running instances still have their network avail‐
able, and no single Linux host becomes a traffic bottleneck. We are able to do this
because we have a sufficient supply of IPv4 addresses to cover all of our instances and
thus don’t need NAT and don’t use floating IP addresses. We provide a single generic
public network to all projects and additional existing VLANs on a project-by-project
basis as needed. Individual projects are also allowed to create their own private GRE
based networks.

Resources
• CSAIL homepage

DAIR
Who uses it: DAIR is an integrated virtual environment that leverages the CANARIE
network to develop and test new information communication technology (ICT) and
other digital technologies. It combines such digital infrastructure as advanced net‐
working and cloud computing and storage to create an environment for developing
and testing innovative ICT applications, protocols, and services; performing at-scale
experimentation for deployment; and facilitating a faster time to market.

Deployment
DAIR is hosted at two different data centers across Canada: one in Alberta and the
other in Quebec. It consists of a cloud controller at each location, although, one is
designated the “master” controller that is in charge of central authentication and quo‐
tas. This is done through custom scripts and light modifications to OpenStack. DAIR
is currently running Grizzly.

For Object Storage, each region has a swift environment.

A NetApp appliance is used in each region for both block storage and instance stor‐
age. There are future plans to move the instances off the NetApp appliance and onto
a distributed file system such as Ceph or GlusterFS.

VlanManager is used extensively for network management. All servers have two bon‐
ded 10GbE NICs that are connected to two redundant switches. DAIR is set up to use
single-node networking where the cloud controller is the gateway for all instances on

Use Cases | 223

www.it-ebooks.info

http://opsgui.de/NPFFez
http://www.it-ebooks.info/

all compute nodes. Internal OpenStack traffic (for example, storage traffic) does not
go through the cloud controller.

Resources
• DAIR homepage

CERN
Who uses it: researchers at CERN (European Organization for Nuclear Research)
conducting high-energy physics research.

Deployment
The environment is largely based on Scientific Linux 6, which is Red Hat compatible.
We use KVM as our primary hypervisor, although tests are ongoing with Hyper-V on
Windows Server 2008.

We use the Puppet Labs OpenStack modules to configure Compute, Image Service,
Identity, and dashboard. Puppet is used widely for instance configuration, and Fore‐
man is used as a GUI for reporting and instance provisioning.

Users and groups are managed through Active Directory and imported into the Iden‐
tity Service using LDAP. CLIs are available for nova and Euca2ools to do this.

There are three clouds currently running at CERN, totaling about 3,400 compute no‐
des, with approximately 60,000 cores. The CERN IT cloud aims to expand to 300,000
cores by 2015.

Resources
• “OpenStack in Production: A tale of 3 OpenStack Clouds”
• “Review of CERN Data Centre Infrastructure”
• “CERN Cloud Infrastructure User Guide”

224 | Appendix A: Use Cases

www.it-ebooks.info

http://opsgui.de/NPFgIP
http://opsgui.de/NPFGiu
http://opsgui.de/1eLAkPR
http://opsgui.de/NPFGPD
http://www.it-ebooks.info/

APPENDIX B

Tales From the Cryp^H^H^H^H Cloud

Herein lies a selection of tales from OpenStack cloud operators. Read and learn from
their wisdom.

Double VLAN
I was on-site in Kelowna, British Columbia, Canada, setting up a new OpenStack
cloud. The deployment was fully automated: Cobbler deployed the OS on the bare
metal, bootstrapped it, and Puppet took over from there. I had run the deployment
scenario so many times in practice and took for granted that everything was working.

On my last day in Kelowna, I was in a conference call from my hotel. In the back‐
ground, I was fooling around on the new cloud. I launched an instance and logged in.
Everything looked fine. Out of boredom, I ran ps aux, and all of the sudden the in‐
stance locked up.

Thinking it was just a one-off issue, I terminated the instance and launched a new
one. By then, the conference call ended, and I was off to the data center.

At the data center, I was finishing up some tasks and remembered the lockup. I log‐
ged in to the new instance and ran ps aux again. It worked. Phew. I decided to run it
one more time. It locked up. WTF.

After reproducing the problem several times, I came to the unfortunate conclusion
that this cloud did indeed have a problem. Even worse, my time was up in Kelowna,
and I had to return to Calgary.

Where do you even begin troubleshooting something like this? An instance just ran‐
domly locks when a command is issued. Is it the image? Nope—it happens on all im‐
ages. Is it the compute node? Nope—all nodes. Is the instance locked up? No! New
SSH connections work just fine!

225

www.it-ebooks.info

http://www.it-ebooks.info/

We reached out for help. A networking engineer suggested it was an MTU issue.
Great! MTU! Something to go on! What’s MTU, and why would it cause a problem?

MTU is maximum transmission unit. It specifies the maximum number of bytes that
the interface accepts for each packet. If two interfaces have two different MTUs, bytes
might get chopped off and weird things happen—such as random session lockups.

Not all packets have a size of 1,500. Running the ls command over
SSH might create only a single packet, less than 1,500 bytes. How‐
ever, running a command with heavy output, such as ps aux, re‐
quires several packets of 1,500 bytes.

OK, so where is the MTU issue coming from? Why haven’t we seen this in any other
deployment? What’s new in this situation? Well, new data center, new uplink, new
switches, new model of switches, new servers, first time using this model of servers…
so, basically, everything was new. Wonderful. We toyed around with raising the MTU
at various areas: the switches, the NICs on the compute nodes, the virtual NICs in the
instances; we even had the data center raise the MTU for our uplink interface. Some
changes worked; some didn’t. This line of troubleshooting didn’t feel right, though.
We shouldn’t have to be changing the MTU in these areas.

As a last resort, our network admin (Alvaro) and I sat down with four terminal win‐
dows, a pencil, and a piece of paper. In one window, we ran ping. In the second win‐
dow, we ran tcpdump on the cloud controller. In the third, tcpdump on the compute
node. And the fourth had tcpdump on the instance. For background, this cloud was a
multinode, non-multi-host setup.

One cloud controller acted as a gateway to all compute nodes. VlanManager was used
for the network config. This means that the cloud controller and all compute nodes
had a different VLAN for each OpenStack project. We used the -s option of ping to
change the packet size. We watched as sometimes packets would fully return, some‐
times only make it out and never back in, and sometimes stop at a random point. We
changed tcpdump to start displaying the hex dump of the packet. We pinged between
every combination of outside, controller, compute, and instance.

Finally, Alvaro noticed something. When a packet from the outside hits the cloud
controller, it should not be configured with a VLAN. We verified this as true. When
the packet went from the cloud controller to the compute node, it should have a
VLAN only if it was destined for an instance. This was still true. When the ping reply
was sent from the instance, it should be in a VLAN. True. When it came back to the
cloud controller and on its way out to the public Internet, it should no longer have a
VLAN. False. Uh oh. It looked as though the VLAN part of the packet was not being
removed.

226 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

www.it-ebooks.info

http://www.it-ebooks.info/

That made no sense.

While bouncing this idea around in our heads, I was randomly typing commands on
the compute node:

$ ip a
...
10: vlan100@vlan20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
master br100 state UP
...

“Hey Alvaro, can you run a VLAN on top of a VLAN?”

“If you did, you’d add an extra four bytes to the packet.”

Then it all made sense:

$ grep vlan_interface /etc/nova/nova.conf
vlan_interface=vlan20

In nova.conf, vlan_interface specifies what interface OpenStack should attach all
VLANs to. The correct setting should have been: vlan_interface=bond0.

This would be the server’s bonded NIC.

The vlan20 setting is the VLAN that the data center gave us for outgoing public Inter‐
net access. It’s a correct VLAN and is also attached to bond0.

By mistake, I configured OpenStack to attach all tenant VLANs to vlan20 instead of
bond0, thereby stacking one VLAN on top of another. This then added an extra four
bytes to each packet, which caused a packet of 1,504 bytes to be sent out, which would
cause problems when it arrived at an interface that accepted 1,500!

As soon as this setting was fixed, everything worked.

The Issue
At the end of August 2012, a post-secondary school in Alberta, Canada, migrated its
infrastructure to an OpenStack cloud. As luck would have it, within the first day or
two of it running, one of its servers just disappeared from the network. Blip. Gone.

After restarting the instance, everything was back up and running. We reviewed the
logs and saw that at some point, network communication stopped and then every‐
thing went idle. We chalked this up to a random occurrence.

A few nights later, it happened again.

We reviewed both sets of logs. The one thing that stood out the most was DHCP. At
the time, OpenStack, by default, set DHCP leases for one minute (it’s now two mi‐
nutes). This means that every instance contacts the cloud controller (DHCP server)
to renew its fixed IP. For some reason, this instance could not renew its IP. We corre‐

Tales From the Cryp^H^H^H^H Cloud | 227

www.it-ebooks.info

http://www.it-ebooks.info/

lated the instance’s logs with the logs on the cloud controller and put together a con‐
versation:

1. Instance tries to renew IP.
2. Cloud controller receives the renewal request and sends a response.
3. Instance “ignores” the response and resends the renewal request.
4. Cloud controller receives the second request and sends a new response.
5. Instance begins sending a renewal request to 255.255.255.255, since it hasn’t

heard back from the cloud controller.
6. The cloud controller receives the 255.255.255.255 request and sends a third re‐

sponse.
7. The instance finally gives up.

With this information in hand, we were sure that the problem had to do with DHCP.
We thought that, for some reason, the instance wasn’t getting a new IP address, and
with no IP, it shut itself off from the network.

A quick Google search turned up this: DHCP lease errors in VLAN mode, which fur‐
ther supported our DHCP theory.

An initial idea was to just increase the lease time. If the instance renewed only once
every week, the chances of this problem happening would be tremendously smaller
than every minute. This didn’t solve the problem, though. It was just covering the
problem up.

We decided to have tcpdump run on this instance and see whether we could catch it in
action again. Sure enough, we did.

The tcpdump looked very, very weird. In short, it looked as though network commu‐
nication stopped before the instance tried to renew its IP. Since there is so much
DHCP chatter from a one-minute lease, it’s very hard to confirm it, but even with on‐
ly milliseconds difference between packets, if one packet arrives first, it arrives first,
and if that packet reported network issues, then it had to have happened before
DHCP.

Additionally, the instance in question was responsible for a very, very large backup
job each night. While “the Issue” (as we were now calling it) didn’t happen exactly
when the backup happened, it was close enough (a few hours) that we couldn’t ignore
it.

More days go by and we catch the Issue in action more and more. We find that
dhclient is not running after the Issue happens. Now we’re back to thinking it’s a
DHCP problem. Running /etc/init.d/networking restart brings everything back
up and running.

228 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

www.it-ebooks.info

http://opsgui.de/NPFfEJ
http://www.it-ebooks.info/

Ever have one of those days where all of the sudden you get the Google results you
were looking for? Well, that’s what happened here. I was looking for information on
dhclient and why it dies when it can’t renew its lease, and all of the sudden I found a
bunch of OpenStack and dnsmasq discussions that were identical to the problem we
were seeing:

• “Problem with Heavy Network IO and Dnsmasq”
• “Instances losing IP address while running, due to No DHCPOFFER”

Seriously, Google.

This bug report was the key to everything: “KVM images lose connectivity with
bridged network”.

It was funny to read the report. It was full of people who had some strange network
problem but didn’t quite explain it in the same way.

So it was a QEMU/KVM bug.

At the same time I found the bug report, a coworker was able to successfully repro‐
duce the Issue! How? He used iperf to spew a ton of bandwidth at an instance. With‐
in 30 minutes, the instance just disappeared from the network.

Armed with a patched QEMU and a way to reproduce, we set out to see if we had
finally solved the Issue. After 48 straight hours of hammering the instance with band‐
width, we were confident. The rest is history. You can search the bug report for “joe”
to find my comments and actual tests.

Disappearing Images
At the end of 2012, Cybera (a nonprofit with a mandate to oversee the development
of cyberinfrastructure in Alberta, Canada) deployed an updated OpenStack cloud for
its DAIR project. A few days into production, a compute node locked up. Upon re‐
booting the node, I checked to see what instances were hosted on that node so I could
boot them on behalf of the customer. Luckily, only one instance.

The nova reboot command wasn’t working, so I used virsh, but it immediately
came back with an error saying it was unable to find the backing disk. In this case, the
backing disk is the glance image that is copied to /var/lib/nova/instances/_base
when the image is used for the first time. Why couldn’t it find it? I checked the direc‐
tory, and sure enough, it was gone.

I reviewed the nova database and saw the instance’s entry in the nova.instances
table. The image that the instance was using matched what virsh was reporting, so
no inconsistency there.

Tales From the Cryp^H^H^H^H Cloud | 229

www.it-ebooks.info

http://opsgui.de/1eLzAKE
http://opsgui.de/NPFgbL
http://opsgui.de/1eLzBy8
http://opsgui.de/1eLzBy8
http://opsgui.de/NPFgIP
http://www.it-ebooks.info/

I checked glance and noticed that this image was a snapshot that the user created. At
least that was good news—this user would have been the only user affected.

Finally, I checked StackTach and reviewed the user’s events. He had created and de‐
leted several snapshots—most likely experimenting. Although the timestamps didn’t
match up, my conclusion was that he launched his instance and then deleted the
snapshot and it was somehow removed from /var/lib/nova/instances/_base.
None of that made sense, but it was the best I could come up with.

It turns out the reason that this compute node locked up was a hardware issue. We
removed it from the DAIR cloud and called Dell to have it serviced. Dell arrived and
began working. Somehow or another (or a fat finger), a different compute node was
bumped and rebooted. Great.

When this node fully booted, I ran through the same scenario of seeing what instan‐
ces were running so that I could turn them back on. There were a total of four. Three
booted and one gave an error. It was the same error as before: unable to find the
backing disk. Seriously, what?

Again, it turns out that the image was a snapshot. The three other instances that suc‐
cessfully started were standard cloud images. Was it a problem with snapshots? That
didn’t make sense.

A note about DAIR’s architecture: /var/lib/nova/instances is a shared NFS mount.
This means that all compute nodes have access to it, which includes the _base direc‐
tory. Another centralized area is /var/log/rsyslog on the cloud controller. This di‐
rectory collects all OpenStack logs from all compute nodes. I wondered if there were
any entries for the file that virsh is reporting:

dair-ua-c03/nova.log:Dec 19 12:10:59 dair-ua-c03
2012-12-19 12:10:59 INFO nova.virt.libvirt.imagecache
[-] Removing base file:
/var/lib/nova/instances/_base/7b4783508212f5d242cbf9ff56fb8d33b4ce6166_10

Aha! So OpenStack was deleting it. But why?

A feature was introduced in Essex to periodically check and see whether there were
any _base files not in use. If there were, nova would delete them. This idea sounds
innocent enough and has some good qualities to it. But how did this feature end up
turned on? It was disabled by default in Essex, as it should be, but it was decided to
enable it in Folsom. I cannot emphasize enough that:

Actions that delete things should not be enabled by default.

Disk space is cheap these days. Data recovery is not.

Secondly, DAIR’s shared /var/lib/nova/instances directory contributed to the
problem. Since all compute nodes have access to this directory, all compute nodes

230 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

www.it-ebooks.info

http://opsgui.de/1eLzAuj
http://opsgui.de/1eLzAuj
http://www.it-ebooks.info/

periodically review the _base directory. If there is only one instance using an image,
and the node that the instance is on is down for a few minutes, it won’t be able to
mark the image as still in use. Therefore, the image seems like it’s not in use and is
deleted. When the compute node comes back online, the instance hosted on that
node is unable to start.

The Valentine’s Day Compute Node Massacre
Although the title of this story is much more dramatic than the actual event, I don’t
think, or hope, that I’ll have the opportunity to use “Valentine’s Day Massacre” again
in a title.

This past Valentine’s Day, I received an alert that a compute node was no longer avail‐
able in the cloud—meaning:

$nova-manage service list

showed this particular node with a status of XXX.

I logged in to the cloud controller and was able to both ping and SSH into the prob‐
lematic compute node, which seemed very odd. Usually when I receive this type of
alert, the compute node has totally locked up and would be inaccessible.

After a few minutes of troubleshooting, I saw the following details:

• A user recently tried launching a CentOS instance on that node.
• This user was the only user on the node (new node).
• The load shot up to 8 right before I received the alert.
• The bonded 10gb network device (bond0) was in a DOWN state.
• The 1gb NIC was still alive and active.

I looked at the status of both NICs in the bonded pair and saw that neither was able
to communicate with the switch port. Seeing as how each NIC in the bond is connec‐
ted to a separate switch, I thought that the chance of a switch port dying on each
switch at the same time was quite improbable. I concluded that the 10gb dual port
NIC had died and needed to be replaced. I created a ticket for the hardware support
department at the data center where the node was hosted. I felt lucky that this was a
new node and no one else was hosted on it yet.

An hour later I received the same alert, but for another compute node. Crap. OK,
now there’s definitely a problem going on. Just as with the original node, I was able to
log in by SSH. The bond0 NIC was DOWN, but the 1gb NIC was active.

And the best part: the same user had just tried creating a CentOS instance. What?

Tales From the Cryp^H^H^H^H Cloud | 231

www.it-ebooks.info

http://www.it-ebooks.info/

I was totally confused at this point, so I texted our network admin to see if he was
available to help. He logged in to both switches and immediately saw the problem: the
switches detected spanning tree packets coming from the two compute nodes and
immediately shut the ports down to prevent spanning tree loops:

Feb 15 01:40:18 SW-1 Stp: %SPANTREE-4-BLOCK_BPDUGUARD: Received BPDU packet on
Port-Channel35 with BPDU guard enabled. Disabling interface.
(source mac fa:16:3e:24:e7:22)
Feb 15 01:40:18 SW-1 Ebra: %ETH-4-ERRDISABLE: bpduguard error detected
on Port-Channel35.
Feb 15 01:40:18 SW-1 Mlag: %MLAG-4-INTF_INACTIVE_LOCAL: Local interface
Port-Channel35 is link down. MLAG 35 is inactive.
Feb 15 01:40:18 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on Interface
Port-Channel35 (Server35), changed state to down
Feb 15 01:40:19 SW-1 Stp: %SPANTREE-6-INTERFACE_DEL: Interface Port-Channel35
has been removed from instance MST0
Feb 15 01:40:19 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on Interface
Ethernet35 (Server35), changed state to down

He reenabled the switch ports, and the two compute nodes immediately came back to
life.

Unfortunately, this story has an open ending—we’re still looking into why the CentOS
image was sending out spanning tree packets. Further, we’re researching a proper way
to mitigate how often this happens. It’s a bigger issue than one might think. While it’s
extremely important for switches to prevent spanning tree loops, it’s very problematic
to have an entire compute node be cut from the network when this occurs. If a com‐
pute node is hosting 100 instances and one of them sends a spanning tree packet, that
instance has effectively DDOS’d the other 99 instances.

This is an ongoing and hot topic in networking circles—especially with the rise of vir‐
tualization and virtual switches.

Down the Rabbit Hole
Users being able to retrieve console logs from running instances is a boon for support
—many times they can figure out what’s going on inside their instance and fix what’s
going on without bothering you. Unfortunately, sometimes overzealous logging of
failures can cause problems of its own.

A report came in: VMs were launching slowly, or not at all. Cue the standard checks
—nothing on the Nagios, but there was a spike in network toward the current master
of our RabbitMQ cluster. Investigation started, but soon the other parts of the queue
cluster were leaking memory like a sieve. Then the alert came in: the master rabbit
server went down. Connections failed over to the slave.

At that time, our control services were hosted by another team. We didn’t have much
debugging information to determine what was going on with the master, and couldn’t

232 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

www.it-ebooks.info

http://www.it-ebooks.info/

reboot it. That team noted that the master failed without alert, but they managed to
reboot it. After an hour, the cluster had returned to its normal state, and we went
home for the day.

Continuing the diagnosis the next morning was kick-started by another identical fail‐
ure. We quickly got the message queue running again and tried to work out why Rab‐
bit was suffering from so much network traffic. Enabling debug logging on nova-api
quickly brought understanding. A tail -f /var/log/nova/nova-api.log was
scrolling by faster than we’d ever seen before. CTRL+C on that, and we could plainly
see the contents of a system log spewing failures over and over again—a system log
from one of our users’ instances.

After finding the instance ID, we headed over to /var/lib/nova/instances to find
the console.log:

adm@cc12:/var/lib/nova/instances/instance-00000e05# wc -l console.log
92890453 console.log
adm@cc12:/var/lib/nova/instances/instance-00000e05# ls -sh console.log
5.5G console.log

Sure enough, the user had been periodically refreshing the console log page on the
dashboard, and the 5 GB file was traversing the rabbit cluster to get to the dashboard.

We called the user and asked her to stop for a while, and she was happy to abandon
the horribly broken VM. After that, we started monitoring the size of console logs.

To this day, the issue doesn’t have a permanent resolution, but we look forward to the
discussion at the next summit.

Havana Haunted by the Dead
Felix Lee of Academia Sinica Grid Computing Centre in Taiwan contributed this
story.

I just upgraded OpenStack from Grizzly to Havana 2013.2-2 using the RDO reposito‐
ry and everything was running pretty well—except the EC2 API.

I noticed that the API would suffer from a heavy load and respond slowly to particu‐
lar EC2 requests, such as RunInstances.

Output from /var/log/nova/nova-api.log on Havana:

2014-01-10 09:11:45.072 129745 INFO nova.ec2.wsgi.server
[req-84d16d16-3808-426b-b7af-3b90a11b83b0
0c6e7dba03c24c6a9bce299747499e8a 7052bd6714e7460caeb16242e68124f9]
117.103.103.29 "GET
/services/Cloud?AWSAccessKeyId= \
[something]&Action=RunInstances&ClientToken= \

Tales From the Cryp^H^H^H^H Cloud | 233

www.it-ebooks.info

http://opsgui.de/NPFiAx
http://www.it-ebooks.info/

[something]&ImageId=ami-00000001&InstanceInitiatedShutdownBehavior=terminate...
HTTP/1.1" status: 200 len: 1109 time: 138.5970151

This request took more than two minutes to process, but it executed quickly on an‐
other coexisting Grizzly deployment using the same hardware and system configura‐
tion.

Output from /var/log/nova/nova-api.log on Grizzly:

2014-01-08 11:15:15.704 INFO nova.ec2.wsgi.server
[req-ccac9790-3357-4aa8-84bd-cdaab1aa394e
ebbd729575cb404081a45c9ada0849b7 8175953c209044358ab5e0ec19d52c37]
117.103.103.29 "GET
/services/Cloud?AWSAccessKeyId= \
[something]&Action=RunInstances&ClientToken= \
[something]&ImageId=ami-00000007&InstanceInitiatedShutdownBehavior=terminate...
HTTP/1.1" status: 200 len: 931 time: 3.9426181

While monitoring system resources, I noticed a significant increase in memory con‐
sumption while the EC2 API processed this request. I thought it wasn’t handling
memory properly—possibly not releasing memory. If the API received several of
these requests, memory consumption quickly grew until the system ran out of RAM
and began using swap. Each node has 48 GB of RAM, and the nova-api process
would consume all of it within minutes. Once this happened, the entire system would
become unusably slow until I restarted the nova-api service.

So, I found myself wondering what changed in the EC2 API on Havana that might
cause this to happen. Was it a bug or normal behavior that I now need to work
around?

After digging into the nova code, I noticed two areas in api/ec2/cloud.py potential‐
ly impacting my system:

 instances = self.compute_api.get_all(context,
 search_opts=search_opts,
 sort_dir='asc')

 sys_metas = self.compute_api.get_all_system_metadata(
 context, search_filts=[{'key': ['EC2_client_token']},
 {'value': [client_token]}])

Since my database contained many records—over 1 million metadata records and
over 300,000 instance records in “deleted” or “errored” states—each search took ages.
I decided to clean up the database by first archiving a copy for backup and then
performing some deletions using the MySQL client. For example, I ran the following
SQL command to remove rows of instances deleted for more than a year:

mysql> delete from nova.instances where deleted=1 and terminated_at < (NOW() -
INTERVAL 1 YEAR);

234 | Appendix B: Tales From the Cryp^H^H^H^H Cloud

www.it-ebooks.info

http://www.it-ebooks.info/

Performance increased greatly after deleting the old records, and my new deployment
continues to behave well.

Tales From the Cryp^H^H^H^H Cloud | 235

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C

Working with Roadmaps

The good news: OpenStack has unprecedented transparency when it comes to pro‐
viding information about what’s coming up. The bad news: each release moves very
quickly. The purpose of this appendix is to highlight some of the useful pages to track,
and take an educated guess at what is coming up in the Icehouse release and perhaps
further afield.

OpenStack follows a six month release cycle, typically releasing in April/May and Oc‐
tober/November each year. At the start of each cycle, the community gathers in a sin‐
gle location for a design summit. At the summit, the features for the coming releases
are discussed, prioritized, and planned. Figure C-1 shows an example release cycle,
with dates showing milestone releases, code freeze, and string freeze dates, along with
an example of when the summit occurs. Milestones are interim releases within the
cycle that are available as packages for download and testing. Code freeze is putting a
stop to adding new features to the release. String freeze is putting a stop to changing
any strings within the source code.

Figure C-1. Release cycle diagram

237

www.it-ebooks.info

http://www.it-ebooks.info/

Information Available to You
There are several good sources of information available that you can use to track your
OpenStack development desires.

Release notes are maintained on the OpenStack wiki, and also shown here:

Series Status Releases Date

Icehouse Under development, release schedule 2014.1 Apr 17, 2014

Havana Current stable release, security-supported 2013.2 Apr 4, 2013

2013.2.1 Dec 16, 2013

Grizzly Security-supported 2013.1 Apr 4, 2013

2013.1.1 May 9, 2013

2013.1.2 Jun 6, 2013

2013.1.3 Aug 8, 2013

2013.1.4 Oct 17, 2013

Folsom Community-supported 2012.2 Sep 27, 2012

2012.2.1 Nov 29, 2012

2012.2.2 Dec 13, 2012

2012.2.3 Jan 31, 2013

2012.2.4 Apr 11, 2013

Essex Community-supported 2012.1 Apr 5, 2012

2012.1.1 Jun 22, 2012

2012.1.2 Aug 10, 2012

2012.1.3 Oct 12, 2012

Diablo Deprecated 2011.3 Sep 22, 2011

2011.3.1 Jan 19, 2012

238 | Appendix C: Working with Roadmaps

www.it-ebooks.info

http://opsgui.de/1eLzG51
http://opsgui.de/NPFhMW
http://opsgui.de/1eLzHFY
http://opsgui.de/NPFjEI
http://opsgui.de/1eLzK4A
http://opsgui.de/NPFlw8
http://opsgui.de/1eLzMtp
http://opsgui.de/NPFks3
http://opsgui.de/1eLzNgP
http://opsgui.de/NPFmjO
http://opsgui.de/1eLzOBB
http://opsgui.de/NPFobr
http://opsgui.de/1eLzPpd
http://opsgui.de/NPFos2
http://opsgui.de/1eLzSRP
http://opsgui.de/NPFqjB
http://opsgui.de/1eLzUsX
http://opsgui.de/NPFqQs
http://opsgui.de/1eLzVwW
http://opsgui.de/NPFsYy
http://www.it-ebooks.info/

Series Status Releases Date

Cactus Deprecated 2011.2 Apr 15, 2011

Bexar Deprecated 2011.1 Feb 3, 2011

Austin Deprecated 2010.1 Oct 21, 2010

Here are some other resources:

• A breakdown of current features under development, with their target milestone
• A list of all features, including those not yet under development
• Rough-draft design discussions (“etherpads”) from the last design summit
• List of individual code changes under review

Influencing the Roadmap
OpenStack truly welcomes your ideas (and contributions) and highly values feedback
from real-world users of the software. By learning a little about the process that drives
feature development, you can participate and perhaps get the additions you desire.

Feature requests typically start their life in Etherpad, a collaborative editing tool,
which is used to take coordinating notes at a design summit session specific to the
feature. This then leads to the creation of a blueprint on the Launchpad site for the
particular project, which is used to describe the feature more formally. Blueprints are
then approved by project team members, and development can begin.

Therefore, the fastest way to get your feature request up for consideration is to create
an Etherpad with your ideas and propose a session to the design summit. If the de‐
sign summit has already passed, you may also create a blueprint directly. Read this
blog post about how to work with blueprints the perspective of Victoria Martínez, a
developer intern.

The roadmap for the next release as it is developed can be seen at Releases.

To determine the potential features going in to future releases, or to look at features
implemented previously, take a look at the existing blueprints such as OpenStack
Compute (nova) Blueprints, OpenStack Identity (keystone) Blueprints, and release
notes.

Aside from the direct-to-blueprint pathway, there is another very well-regarded
mechanism to influence the development roadmap: the user survey. Found at http://
openstack.org/user-survey, it allows you to provide details of your deployments and
needs, anonymously by default. Each cycle, the user committee analyzes the results

Working with Roadmaps | 239

www.it-ebooks.info

http://opsgui.de/1eLzYsI
http://opsgui.de/NPFtvH
http://opsgui.de/1eLA1Vm
http://opsgui.de/NPFvnh
http://opsgui.de/1eLA2IT
http://opsgui.de/NPFwaQ
http://opsgui.de/1eLA43u
http://opsgui.de/NPFy2x
http://opsgui.de/1eLA7wg
http://opsgui.de/NPFxf5
http://opsgui.de/NPFxf5
http://opsgui.de/1eLA8An
http://openstack.org/user-survey
http://openstack.org/user-survey
http://www.it-ebooks.info/

and produces a report, including providing specific information to the technical
committee and technical leads of the projects.

Aspects to Watch
You want to keep an eye on the areas improving within OpenStack. The best way to
“watch” roadmaps for each project is to look at the blueprints that are being approved
for work on milestone releases. You can also learn from PTL webinars that follow the
OpenStack summits twice a year.

Driver Quality Improvements
A major quality push has occurred across drivers and plug-ins in Block Storage,
Compute, and Networking. Particularly, developers of Compute and Networking
drivers that require proprietary or hardware products are now required to provide an
automated external testing system for use during the development process.

Easier Upgrades
One of the most requested features since OpenStack began (for components other
than Object Storage, which tends to “just work”): easier upgrades. From Grizzly on‐
ward (and significantly improved in Havana), internal messaging communication is
versioned, meaning services can theoretically drop back to backward-compatible be‐
havior. This allows you to run later versions of some components, while keeping old‐
er versions of others.

In addition, a lot of focus has been placed on database migrations. These are now bet‐
ter managed, including the use of the Turbo Hipster tool, which tests database migra‐
tion performance on copies of real-world user databases.

These changes have facilitated the first proper OpenStack upgrade guide, found in
Chapter 18, and will continue to improve in Icehouse.

Deprecation of Nova Network
With the introduction of the full software-defined networking stack provided by
OpenStack Networking (neutron) in the Folsom release, development effort on the
initial networking code that remains part of the Compute component has gradually
lessened. While many still use nova-network in production, there has been a long-
term plan to remove the code in favor of the more flexible and full-featured Open‐
Stack Networking.

An attempt was made to deprecate nova-network during the Havana release, which
was aborted due to the lack of equivalent functionality (such as the FlatDHCP multi-
host high-availability mode mentioned in this guide), lack of a migration path be‐

240 | Appendix C: Working with Roadmaps

www.it-ebooks.info

http://www.it-ebooks.info/

tween versions, insufficient testing, and simplicity when used for the more straight‐
forward use cases nova-network traditionally supported. Though significant effort
has been made to address these concerns, nova-network will not be deprecated in the
Icehouse release. In addition, the Program Technical Lead of the Compute project has
indicated that, to a limited degree, patches to nova-network will now again begin to
be accepted.

This leaves you with an important point of decision when designing your cloud.
OpenStack Networking is robust enough to use with a small number of limitations
(IPv6 support, performance issues in some scenarios) and provides many more fea‐
tures than nova-network. However, if you do not have the more complex use cases
that can benefit from fuller software-defined networking capabilities, or are uncom‐
fortable with the new concepts introduced, nova-network may continue to be a viable
option for the next 12 to 18 months.

Similarly, if you have an existing cloud and are looking to upgrade from nova-
network to OpenStack Networking, you should have the option to delay the upgrade
for this period of time. However, each release of OpenStack brings significant new in‐
novation, and regardless of your use of networking methodology, it is likely best to
begin planning for an upgrade within a reasonable timeframe of each release.

As mentioned, there’s currently no way to cleanly migrate from nova-network to neu‐
tron. We recommend that you keep a migration in mind and what that process might
involve for when a proper migration path is released. If you must upgrade, please be
aware that both service and instance downtime is likely unavoidable.

Replacement of Open vSwitch Plug-in with
Modular Layer 2
The Modular Layer 2 plug-in is a framework allowing OpenStack Networking to si‐
multaneously utilize the variety of layer-2 networking technologies found in complex
real-world data centers. It currently works with the existing Open vSwitch, Linux
Bridge, and Hyper-V L2 agents and is intended to replace and deprecate the mono‐
lithic plug-ins associated with those L2 agents.

Compute V3 API
The third version of the Compute API was broadly discussed and worked on during
the Havana and Icehouse release cycles. Current discussions indicate that the V2 API
will remain for many releases, but this is a great time to evaluate the Compute API
and provide comments while it is being defined. Of particular note is the decision
that the V3 API will not support XML messages—being JSON only. This was based
on the poor testing of existing XML responses in the V2 API and the lack of effort to

Working with Roadmaps | 241

www.it-ebooks.info

http://www.it-ebooks.info/

continue to develop and maintain an entire second response type. Feedback on this
and any such change is welcome by responding to the user survey.

OpenStack on OpenStack (TripleO)
This project continues to improve and you may consider using it for greenfield
deployments.

Data Processing (Sahara)
A much-requested answer to big data problems, a dedicated team has been making
solid progress on a Hadoop-as-a-Service project.

Bare-Metal Deployment (Ironic)
Though bare-metal deployment has been widely lauded, and development continues,
the project to replace the Compute bare-metal driver will not graduate in Icehouse. A
particular blueprint to follow is Migration Path from Nova’s BM Driver, which tracks
the ability to move to the new project from an existing bare-metal deployment.

Database as a Service (Trove)
The OpenStack community has had a database-as-a-service tool in development for
some time, and we will finally see the first integrated release of it in Icehouse. Initially,
it will only support MySQL, with further options available in Juno onward, but it
should be able to deploy database servers out of the box in a highly available way
from this release.

Messaging as a Service (Marconi)
A service to provide queues of messages and notifications has entered “incubation,”
meaning if the upcoming development cycles are successful, it will be released in
Juno.

Scheduler Improvements
Both Compute and Block Storage rely on schedulers to determine where to place vir‐
tual machines or volumes. In Havana, the Compute scheduler underwent significant
improvement, while in Icehouse the scheduler in Block Storage is slated for a boost.
Further down the track, an effort started this cycle that aims to create a holistic sched‐
uler covering both will come to fruition.

242 | Appendix C: Working with Roadmaps

www.it-ebooks.info

http://opsgui.de/1eLAaba
http://opsgui.de/NPFBex
http://www.it-ebooks.info/

Block Storage Improvements
The team discussed many areas of work at the Icehouse summit, including volume
migration support, Ceph integration, and access control for volumes.

Toward a Python SDK
Though many successfully use the various python-*client code as an effective SDK
for interacting with OpenStack, consistency between the projects and documentation
availability waxes and wanes. To combat this, an effort to improve the experience has
started. Cross-project development efforts in OpenStack have a checkered history,
such as the unified client project having several false starts. However, the early signs
for the SDK project are promising, and we expect to see results during the Juno cycle.

Working with Roadmaps | 243

www.it-ebooks.info

http://opsgui.de/1eLAaYU
http://opsgui.de/NPFBLH
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D

Icehouse Preview

The Icehouse release of OpenStack was made available April 17, 2014, a few days be‐
fore this book went to print! It was built by 112 different companies. Over 1,200 con‐
tributors submitted a patch to the collection of projects for more than 17,000 com‐
mits. All in all, this release had more than 113,000 reviews on those commits.

Here is a preview of the features being offered for the first time for each project. Not
all of these features are fully documented in the official documentation, but we want‐
ed to share the list here.

A few themes emerge as you investigate the various blueprints implemented and bugs
fixed:

• Projects now consider migration and upgrades as part of the “gated” test suite.
• Projects do not have a common scheduler yet, but are testing and releasing vari‐

ous schedulers according to real-world uses.
• Projects are enabling more notifications and custom logging.
• Projects are adding in more location-awareness.
• Projects are tightly integrating with advancements in orchestration.
• The Block Storage, Compute, and Networking projects implemented the x-
openstack-request-id header to more efficiently trace request flows across
OpenStack services by logging mappings of request IDs as they cross service
boundaries.

These sections offer listings of features added, hand-picked from a total of nearly 350
blueprints implemented across ten projects in the integrated Icehouse release. For
even more details about the Icehouse release including upgrade notes, refer to the re‐
lease notes at https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse.

245

www.it-ebooks.info

https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://www.it-ebooks.info/

Block Storage (cinder)
31 blueprints

• When using absolute limits command, let user know the currently used resour‐
ces, similar to Compute.

• Notifications for volume attach and detach.
• Deprecate the chance and simple schedulers.
• Retyping volumes enabled—HP LeftHand, SolidFire.
• Volume metadata stored on backup.
• Let operators log the reasons that the Block Storage service was disabled.
• Dell EqualLogic volumes can now be extended.
• Support for qos_specs for SolidFire driver; creation and management of qos sep‐

arate from volume-types.
• Quota settings for deletion.
• Backup recovery API for import and export.
• EMC VNX Direct Driver added.
• Fibre Channel Volume Driver added.
• HP MSA2040 driver added.
• Enhancements to 3PAR driver such as migrate volume natively and the qos-specs

feature.
• IBM SONAS and Storwize v7000 Unified Storage Systems drivers added.
• HP LeftHand driver enhancements.
• TSM Backup Driver enhancements.

Common (oslo)
22 blueprints

• Standalone rootwrap implementation.
• Messages can be localized for i18n support.
• Notifications are configurable.

246 | Appendix D: Icehouse Preview

www.it-ebooks.info

http://www.it-ebooks.info/

Compute (nova)
65 blueprints

Limited live upgrades are now supported. This enables deployers to upgrade control‐
ler infrastructure first, and subsequently upgrade individual compute nodes without
requiring downtime of the entire cloud to complete.

Hyper-V driver added RDP console support.

Libvirt (KVM) driver additions:

• The Libvirt compute driver now supports providing modified kernel arguments
to booting compute instances. The kernel arguments are retrieved from the
os_command_line key in the image metadata as stored in Glance, if a value for
the key was provided. Otherwise, the default kernel arguments are used.

• The Libvirt driver now supports using VirtIO SCSI (virtio-scsi) instead of VirtIO
Block (virtio-blk) to provide block device access for instances. Virtio SCSI is a
para-virtualized SCSI controller device designed as a future successor to VirtIO
Block and aiming to provide improved scalability and performance.

• The Libvirt Compute driver now supports adding a Virtio RNG device to com‐
pute instances to provide increased entropy. Virtio RNG is a paravirtual random
number generation device. It allows the compute node to provide entropy to the
compute instances in order to fill their entropy pool. The default entropy device
used is /dev/random; however, use of a physical hardware RNG device attached
to the host is also possible. The use of the Virtio RNG device is enabled using the
hw_rng property in the metadata of the image used to build the instance.

• The Libvirt driver now allows the configuration of instances to use video driver
other than the default (cirros). This allows the specification of different video
driver models, different amounts of video RAM, and different numbers of heads.
These values are configured by setting the hw_video_model, hw_video_vram, and
hw_video_head properties in the image metadata. Currently supported video
driver models are vga, cirrus, vmvga, xen and qxl.

• Watchdog support has been added to the Libvirt driver. The watchdog device
used is i6300esb. It is enabled by setting the hw_watchdog_action property in
the image properties or flavor extra specifications (extra_specs) to a value other
than disabled. Supported hw_watchdog_action property values, which denote
the action for the watchdog device to take in the event of an instance failure, are
poweroff, reset, pause, and none.

• The High Precision Event Timer (HPET) is now disabled for instances created
using the Libvirt driver. The use of this option was found to lead to clock drift in
Windows guests when under heavy load.

Icehouse Preview | 247

www.it-ebooks.info

http://www.it-ebooks.info/

• The Libvirt driver now supports waiting for an event from Neutron during in‐
stance boot for better reliability. This requires a suitably new Neutron that sup‐
ports sending these events, and avoids a race between the instance expecting net‐
working to be ready and the actual plumbing that is required.

VMware driver additions:

• The VMware Compute drivers now support the virtual machine diagnostics call.
Diagnostics can be retrieved using the nova diagnostics INSTANCE command,
where INSTANCE is replaced by an instance name or instance identifier.

• The VMware Compute drivers now support booting an instance from an ISO
image.

• The VMware Compute drivers now support the aging of cached images.

XenServer driver additions:

• Added initial support for PCI pass-through.
• Maintained group B status through the introduction of the XenServer CI.
• Improved support for ephemeral disks (including migration and resize up of

multiple ephemeral disks).
• Support for vcpu_pin_set, essential when you pin CPU resources to Dom0.
• Numerous performance and stability enhancements.

API changes:

• In OpenStack Compute, the OS-DCF:diskConfig API attribute is no longer sup‐
ported in V3 of the nova API.

• The Compute API currently supports both XML and JSON formats. Support for
the XML format is now deprecated and will be retired in a future release.

• The Compute API now exposes a mechanism for permanently removing decom‐
missioned compute nodes. Previously these would continue to be listed even
where the Compute Service had been disabled and the system re-provisioned.
This functionality is provided by the ExtendedServicesDelete API extension.

• Separated the V3 API admin_actions plug-in into logically separate plug-ins so
operators can enable subsets of the functionality currently present in the plug-in.

• The Compute Service now uses the tenant identifier instead of the tenant name
when authenticating with OpenStack Networking (Neutron). This improves sup‐
port for the OpenStack Identity API v3, which allows non-unique tenant names.

248 | Appendix D: Icehouse Preview

www.it-ebooks.info

http://opsgui.de/1gwRjq3
http://www.it-ebooks.info/

• The Compute API now exposes the hypervisor IP address, allowing it to be re‐
trieved by administrators using the nova hypervisor-show command.

Scheduler updates:

• The scheduler now includes an initial implementation of a caching scheduler
driver. The caching scheduler uses the existing facilities for applying scheduler
filters and weights but caches the list of available hosts. When a user request is
passed to the caching scheduler it attempts to perform scheduling based on the
list of cached hosts, with a view to improving scheduler performance.

• A new scheduler filter, AggregateImagePropertiesIsolation, has been intro‐
duced. The new filter schedules instances to hosts based on matching name‐
spaced image properties with host aggregate properties. Hosts that do not belong
to any host aggregate remain valid scheduling targets for instances based on all
images. The new Compute Service configuration keys aggregate_image_proper
ties_isolation_namespace and aggregate_image_properties_isolation_sep
arator are used to determine which image properties are examined by the filter.

• Weight normalization in OpenStack Compute is now a feature. Weights are nor‐
malized, so there is no need to artificially inflate multipliers. The maximum
weight that a weigher will put for a node is 1.0 and the minimum is 0.0.

• The scheduler now supports server groups. The following types are supported—
anti-affinity and affinity filters. That is, a server that is deployed will be done ac‐
cording to a predefined policy.

Other features:

• Notifications are now generated upon the creation and deletion of keypairs.
• Notifications are now generated when an compute host is enabled, disabled,

powered on, shut down, rebooted, put into maintenance mode and taken out of
maintenance mode.

• Compute services are now able to shut down gracefully by disabling processing
of new requests when a service shutdown is requested but allowing requests al‐
ready in process to complete before terminating.

• The Compute Service determines what action to take when instances are found
to be running that were previously marked deleted based on the value of the run
ning_deleted_instance_action configuration key. A new shutdown value has
been added. Using this new value allows administrators to optionally keep
instances found in this state for diagnostics while still releasing the runtime
resources.

• File injection is now disabled by default in OpenStack Compute. Instead it is rec‐
ommended that the ConfigDrive and metadata server facilities are used to

Icehouse Preview | 249

www.it-ebooks.info

http://www.it-ebooks.info/

modify guests at launch. To enable file injection modify the inject_key and in
ject_partition configuration keys in /etc/nova/nova.conf and restart the
compute services. The file injection mechanism is likely to be disabled in a future
release.

• A number of changes have been made to the expected format /etc/nova/
nova.conf configuration file with a view to ensuring that all configuration
groups in the file use descriptive names. A number of driver specific flags, in‐
cluding those for the Libvirt driver, have also been moved to their own option
groups.

Database Service (trove)
23 blueprints

• Integration with Orchestration.
• Support for Apache Cassandra NoSQL database for Ubuntu.
• Incremental backups for point in time restoration of database.
• Limited support for MongoDB.

Identity (keystone)
26 blueprints

• The Identity API v2 has been prepared for deprecation, but remains stable and
supported in Icehouse.

The OpenStack Operations Guide does not contain Identity
API v3 in either example architecture.

• Users can update their own password.
• The /v3/OS-FEDERATION/ call allows Identity API to consume federated authen‐

tication with Shibboleth for multiple Identity Providers, and mapping federated
attributes into OpenStack group-based role assignments.

• The POST /v3/users/{user_id}/password call allows API users to update their
own passwords.

250 | Appendix D: Icehouse Preview

www.it-ebooks.info

http://www.it-ebooks.info/

• The GET v3/auth/token?nocatalog call allows API users to opt out of receiving
the service catalog when performing online token validation.

• The /v3/regions call provides a public interface for describing multi-region
deployments.

• /v3/OS-SIMPLECERT/ now publishes the certificates used for PKI token valida‐
tion.

• The /v3/OS-TRUST/trusts call is now capable of providing limited-use delega‐
tion via the remaining_uses attribute of trusts.

• Deployers can now define arbitrary limits on the size of collections in API re‐
sponses (for example, GET /v3/users might be configured to return only 100
users, rather than 10,000). Clients will be informed when truncation has
occurred.

• Backwards compatibility for keystone.middleware.auth_token has been re‐
moved. The auth_token middleware module is no longer provided by the key‐
stone project itself, and must be imported from keystoneclient.middle
ware.auth_token instead.

• The s3_token middleware module is no longer provided by the keystone project
itself, and must be imported from keystoneclient.middleware.s3_token in‐
stead. Backwards compatibility for keystone.middleware.s3_token is slated for
removal in Juno.

• Default token download lasts 1 hour instead of 24 hours. This effectively reduces
the number of tokens that must be persisted at any one time, and (for PKI de‐
ployments) reduces the overhead of the token revocation list.

• Middleware changes:
— The keystone.contrib.access.core.AccessLogMiddleware middleware has

been deprecated in favor of either the eventlet debug access log or Apache
httpd access log and may be removed in the K release.

— The keystone.contrib.stats.core.StatsMiddleware middleware has been
deprecated in favor of external tooling and may be removed in the K release.

— The keystone.middleware.XmlBodyMiddleware middleware has been depre‐
cated in favor of support for “application/json” only and may be removed in
the K release.

• A v3 API version of the EC2 Credential system has been implemented. To use
this, the following section needs to be added to keystone-paste.ini:

[filter:ec2_extension_v3]
paste.filter_factory = keystone.contrib.ec2:Ec2ExtensionV3.factory

Icehouse Preview | 251

www.it-ebooks.info

http://www.it-ebooks.info/

Also, ec2_extension_v3 needs to be added to the pipeline variable in the [pipe
line:api_v3] section of keystone-paste.ini.

• Trust notification for third parties. Identity now emits Cloud Audit Data Federa‐
tion (CADF) event notifications in response to authentication events.

• KVS drivers are now capable of writing to persistent key-value stores such as Re‐
dis, Cassandra, or MongoDB.

• Notifications are now emitted in response to create, update and delete events on
roles, groups, and trusts.

• The LDAP driver for the assignment backend now supports group-based role as‐
signment operations.

• Identity now publishes token revocation events in addition to providing contin‐
ued support for token revocation lists. Token revocation events are designed to
consume much less overhead (when compared to token revocation lists) and will
enable Identity to eliminate token persistence during the Juno release.

Image Service (glance)
10 blueprints

• Can limit the number of additional image locations to pull from storage.
• Upload an image policy now for v1 API.
• ISO Image support.
• NFS as a backend storage facility for images.
• Image location support.
• Image owners in v2 API.
• Retry failed image download with Object Storage (swift) as backend.
• Allow modified kernel arguments.

Networking (neutron)
43 blueprints

• Migration paths for deprecated plug-ins.
• Quotas extended to VIPs, pools, members, and health monitors.
• Hyper-V agent security groups.
• Least routers scheduler.

252 | Appendix D: Icehouse Preview

www.it-ebooks.info

http://opsgui.de/RmoxzD
http://www.it-ebooks.info/

• Operational status for floating IP addresses.
• Open Daylight plug-in.
• Big Switch plug-in enhancements—DHCP scheduler support.
• MidoNet plug-in enhancement.
• One Convergence plug-in.
• Nuage plug-in.
• IBM SDN-VE plug-in.
• Brocade mechanism driver for ML2.
• Remote L2 gateway integration.
• LBaaS driver from Embrane, Radware.
• VPNaaS for Cisco products.
• NEC plug-in enhanced to support packet filtering by Programmable Flow Con‐

trollers (PFC).
• Plumgrid plug-in enables provider network extension.

Object Storage (swift)
15 blueprints

• Logging at the warning level for when an object is quarantined.
• Better container synchronization support across multiple clusters while enabling

a single endpoint.
• New gatekeeper middleware guarding the system metadata.
• Discoverable capabilities added to /info API response so end user can be in‐

formed of cluster limits on names, metadata, and object’s size.
• Account-level access control lists (ACLs) with x-Account-Access-Control header.

OpenStack dashboard (horizon)
40 blueprints

• Translated user interfaces added for German, Hindi, and Serbian.
• Live migration tasks can be performed in the dashboard.
• Users can set public container access for Object Storage objects from the dash‐

board.

Icehouse Preview | 253

www.it-ebooks.info

http://www.it-ebooks.info/

• Users can create “directories” to organize their stored objects.

Orchestration (heat)
53 blueprints

• Adds Identity API v3 support.
• Enables a Database as a Service resource.
• Provides a stack filtering capability.
• Provides a management API.
• Provides a cloud-init resource for templates to use.

Telemetry (ceilometer)
21 blueprints

• Add alarm support for HBase.
• Addition of time-constrained alarms, providing flexibility to set the bar higher or

lower depending on time of day or day of the week.
• Enabled derived rate-based meters for disk and network, more suited to

threshold-oriented alarming.
• Support for collecting metrics of VMs deployed on VMware vCenter.
• Exclude alarms on data points where not enough data is gathered to be signifi‐

cant.
• Enable API access to sampled data sets.
• New sources of metrics:

— Neutron north-bound API on SDN controller
— VMware vCenter Server API
— SNMP daemons on baremetal hosts
— OpenDaylight REST APIs

254 | Appendix D: Icehouse Preview

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX E

Resources

OpenStack
• OpenStack Configuration Reference
• OpenStack Install Guide for Debian 7.0
• OpenStack Install Guide for Red Hat Enterprise Linux, CentOS, and Fedora
• OpenStack Install Guide for openSUSE, SUSE Linux Enterprise Server
• OpenStack Install Guide for Ubuntu 12.04 (LTS) Server
• OpenStack Cloud Administrator Guide
• OpenStack Cloud Computing Cookbook (Packt Publishing)

Cloud (General)
• “The NIST Definition of Cloud Computing”

Python
• Dive Into Python (Apress)

255

www.it-ebooks.info

http://opsgui.de/NPGtjs
http://opsgui.de/1eLBGtX
http://opsgui.de/NPGvrs
http://opsgui.de/1eLBI50
http://opsgui.de/NPGunp
http://opsgui.de/1eLBL0N
http://opsgui.de/NPGwvz
http://opsgui.de/1eLBLOv
http://opsgui.de/NPGxQd
http://www.it-ebooks.info/

Networking
• TCP/IP Illustrated, Volume 1: The Protocols, 2/E (Pearson)
• The TCP/IP Guide (No Starch Press)
• “A tcpdump Tutorial and Primer”

Systems Administration
• UNIX and Linux Systems Administration Handbook (Prentice Hall)

Virtualization
• The Book of Xen (No Starch Press)

Configuration Management
• Puppet Labs Documentation
• Pro Puppet (Apress)

256 | Appendix E: Resources

www.it-ebooks.info

http://opsgui.de/1eLBNWl
http://opsgui.de/NPGzYr
http://opsgui.de/1eLBOJS
http://opsgui.de/NPGyDR
http://opsgui.de/1eLBQSb
http://opsgui.de/NPGzrj
http://opsgui.de/1eLBRFD
http://www.it-ebooks.info/

Glossary

Use this glossary to get definitions of OpenStack-related words and phrases.

To add to this glossary, fork the openstack/openstack-manuals repository and up‐
date the source files through the OpenStack contribution process.
absolute limit

Impassable limits for guest VMs. Settings
include total RAM size, maximum num‐
ber of vCPUs, and maximum disk size.

access control list
A list of permissions attached to an object.
An ACL specifies which users or system
processes have access to objects. It also de‐
fines which operations can be performed
on specified objects. Each entry in a typi‐
cal ACL specifies a subject and an opera‐
tion. For instance, the ACL entry (Alice,
delete) for a file gives Alice permission
to delete the file.

access key
Alternative term for an Amazon EC2 ac‐
cess key. See EC2 access key.

account
The Object Storage context of an account.
Do not confuse with a user account from
an authentication service, such as Active
Directory, /etc/passwd, OpenLDAP,
OpenStack Identity Service, and so on.

account auditor
Checks for missing replicas and incorrect
or corrupted objects in a specified Object

Storage account by running queries
against the backend SQLite database.

account database
A SQLite database that contains Object
Storage accounts and related metadata
and that the accounts server accesses.

account reaper
An Object Storage worker that scans for
and deletes account databases and that the
account server has marked for deletion.

account server
Lists containers in Object Storage and
stores container information in the ac‐
count database.

account service
An Object Storage component that pro‐
vides account services such as list, create,
modify, and audit. Do not confuse with
OpenStack Identity Service, OpenLDAP,
or similar user-account services.

accounting
The Compute Service provides account‐
ing information through the event notifi‐
cation and system usage data facilities.

ACL
See access control list.

257

www.it-ebooks.info

https://github.com/openstack/openstack-manuals
http://www.it-ebooks.info/

active/active configuration
In a high-availability setup with an active/
active configuration, several systems share
the load together and if one fails, the load
is distributed to the remaining systems.

Active Directory
Authentication and identity service by
Microsoft, based on LDAP. Supported in
OpenStack.

active/passive configuration
In a high-availability setup with an active/
passive configuration, systems are set up
to bring additional resources online to re‐
place those that have failed.

address pool
A group of fixed and/or floating IP ad‐
dresses that are assigned to a project and
can be used by or assigned to the VM in‐
stances in a project.

admin API
A subset of API calls that are accessible to
authorized administrators and are gener‐
ally not accessible to end users or the pub‐
lic Internet. They can exist as a separate
service (keystone) or can be a subset of
another API (nova).

admin server
In the context of the Identity Service, the
worker process that provides access to the
admin API.

Advanced Message Queuing Protocol (AMQP)
The open standard messaging protocol
used by OpenStack components for intra-
service communications, provided by
RabbitMQ, Qpid, or ZeroMQ.

Advanced RISC Machine (ARM)
Lower power consumption CPU often
found in mobile and embedded devices.
Supported by OpenStack.

alert
The Compute Service can send alerts
through its notification system, which in‐
cludes a facility to create custom notifica‐

tion drivers. Alerts can be sent to and dis‐
played on the horizon dashboard.

allocate
The process of taking a floating IP address
from the address pool so it can be associ‐
ated with a fixed IP on a guest VM in‐
stance.

Amazon Kernel Image (AKI)
Both a VM container format and disk for‐
mat. Supported by Image Service.

Amazon Machine Image (AMI)
Both a VM container format and disk for‐
mat. Supported by Image Service.

Amazon Ramdisk Image (ARI)
Both a VM container format and disk for‐
mat. Supported by Image Service.

Anvil
A project that ports the shell script-based
project named DevStack to Python.

Apache
The Apache Software Foundation sup‐
ports the Apache community of open-
source software projects. These projects
provide software products for the public
good.

Apache License 2.0
All OpenStack core projects are provided
under the terms of the Apache License 2.0
license.

Apache Web Server
The most common web server software
currently used on the Internet.

API
Application programming interface.

API endpoint
The daemon, worker, or service that a cli‐
ent communicates with to access an API.
API endpoints can provide any number of
services, such as authentication, sales data,
performance metrics, Compute VM com‐
mands, census data, and so on.

active/active configuration

258 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

API extension
Custom modules that extend some Open‐
Stack core APIs.

API extension plug-in
Alternative term for a Networking plug-in
or Networking API extension.

API key
Alternative term for an API token.

API server
Any node running a daemon or worker
that provides an API endpoint.

API token
Passed to API requests and used by Open‐
Stack to verify that the client is authorized
to run the requested operation.

API version
In OpenStack, the API version for a
project is part of the URL. For example,
example.com/nova/v1/foobar.

applet
A Java program that can be embedded in‐
to a web page.

Application Programming Interface (API)
A collection of specifications used to ac‐
cess a service, application, or program. In‐
cludes service calls, required parameters
for each call, and the expected return val‐
ues.

application server
A piece of software that makes available
another piece of software over a network.

Application Service Provider (ASP)
Companies that rent specialized applica‐
tions that help businesses and organiza‐
tions provide additional services with less
cost.

arptables
Tool used for maintaining Address Reso‐
lution Protocol packet filter rules in the
Linux kernel firewall modules. Used along
with iptables, ebtables, and ip6tables in
Compute to provide firewall services for
VMs.

associate
The process associating a Compute float‐
ing IP address with a fixed IP address.

Asynchronous JavaScript and XML (AJAX)
A group of interrelated web development
techniques used on the client-side to cre‐
ate asynchronous web applications. Used
extensively in horizon.

ATA over Ethernet (AoE)
A disk storage protocol tunneled within
Ethernet.

attach
The process of connecting a VIF or vNIC
to a L2 network in Networking. In the
context of Compute, this process connects
a storage volume to an instance.

attachment (network)
Association of an interface ID to a logical
port. Plugs an interface into a port.

auditing
Provided in Compute through the system
usage data facility.

auditor
A worker process that verifies the integri‐
ty of Object Storage objects, containers,
and accounts. Auditors is the collective
term for the Object Storage account audi‐
tor, container auditor, and object auditor.

Austin
Project name for the initial release of
OpenStack.

auth node
Alternative term for an Object Storage au‐
thorization node.

authentication
The process that confirms that the user,
process, or client is really who they say
they are through private key, secret token,
password, fingerprint, or similar method.

authentication token
A string of text provided to the client after
authentication. Must be provided by the

authentication token

Glossary | 259

www.it-ebooks.info

http://www.it-ebooks.info/

user or process in subsequent requests to
the API endpoint.

AuthN
The Identity Service component that pro‐
vides authentication services.

authorization
The act of verifying that a user, process, or
client is authorized to perform an action.

authorization node
An Object Storage node that provides au‐
thorization services.

AuthZ
The Identity Service component that pro‐
vides high-level authorization services.

Auto ACK
Configuration setting within RabbitMQ
that enables or disables message acknowl‐
edgment. Enabled by default.

auto declare
A Compute RabbitMQ setting that deter‐
mines whether a message exchange is au‐
tomatically created when the program
starts.

availability zone
An Amazon EC2 concept of an isolated
area that is used for fault tolerance. Do
not confuse with an OpenStack Compute
zone or cell.

AWS
Amazon Web Services.

backend
Interactions and processes that are obfus‐
cated from the user, such as Compute vol‐
ume mount, data transmission to an iSCSI
target by a daemon, or Object Storage ob‐
ject integrity checks.

backend catalog
The storage method used by the Identity
Service catalog service to store and re‐
trieve information about API endpoints
that are available to the client. Examples
include a SQL database, LDAP database,
or KVS backend.

backend store
The persistent data store used to save and
retrieve information for a service, such as
lists of Object Storage objects, current
state of guest VMs, lists of usernames, and
so on. Also, the method that the Image
Service uses to get and store VM images.
Options include Object Storage, local file
system, S3, and HTTP.

bandwidth
The amount of available data used by
communication resources, such as the In‐
ternet. Represents the amount of data that
is used to download things or the amount
of data available to download.

bare
An Image Service container format that
indicates that no container exists for the
VM image.

base image
An OpenStack-provided image.

Bexar
A grouped release of projects related to
OpenStack that came out in February of
2011. It included Compute (nova) and
Object Storage (swift) only.

binary
Information that consists solely of ones
and zeroes, which is the language of com‐
puters.

bit
A bit is a single digit number that is in
base of 2 (either a zero or one). Band‐
width usage is measured in bits per sec‐
ond.

bits per second (BPS)
The universal measurement of how quick‐
ly data is transferred from place to place.

block device
A device that moves data in the form of
blocks. These device nodes interface the
devices, such as hard disks, CD-ROM
drives, flash drives, and other addressable
regions of memory.

AuthN

260 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

block migration
A method of VM live migration used by
KVM to evacuate instances from one host
to another with very little downtime dur‐
ing a user-initiated switchover. Does not
require shared storage. Supported by
Compute.

Block Storage
The OpenStack core project that enables
management of volumes, volume snap‐
shots, and volume types. The project
name of Block Storage is cinder.

BMC
Baseboard Management Controller. The
intelligence in the IPMI architecture,
which is a specialized micro-controller
that is embedded on the motherboard of a
computer and acts as a server. Manages
the interface between system management
software and platform hardware.

bootable disk image
A type of VM image that exists as a single,
bootable file.

Bootstrap Protocol (BOOTP)
A network protocol used by a network cli‐
ent to obtain an IP address from a config‐
uration server. Provided in Compute
through the dnsmasq daemon when using
either the FlatDHCP manager or VLAN
manager network manager.

browser
Any client software that enables a com‐
puter or device to access the Internet.

builder file
Contains configuration information that
Object Storage uses to reconfigure a ring
or to re-create it from scratch after a seri‐
ous failure.

button class
A group of related button types within
horizon. Buttons to start, stop, and sus‐
pend VMs are in one class. Buttons to as‐
sociate and disassociate floating IP ad‐
dresses are in another class, and so on.

byte
Set of bits that make up a single character;
there are usually 8 bits to a byte.

CA
Certificate Authority or Certification Au‐
thority. In cryptography, an entity that is‐
sues digital certificates. The digital certifi‐
cate certifies the ownership of a public key
by the named subject of the certificate.
This enables others (relying parties) to re‐
ly upon signatures or assertions made by
the private key that corresponds to the
certified public key. In this model of trust
relationships, a CA is a trusted third party
for both the subject (owner) of the certifi‐
cate and the party relying upon the certifi‐
cate. CAs are characteristic of many pub‐
lic key infrastructure (PKI) schemes.

cache pruner
A program that keeps the Image Service
VM image cache at or below its config‐
ured maximum size.

Cactus
An OpenStack grouped release of projects
that came out in the spring of 2011. It in‐
cluded Compute (nova), Object Storage
(swift), and the Image Service (glance).

CALL
One of the RPC primitives used by the
OpenStack message queue software. Sends
a message and waits for a response.

capability
Defines resources for a cell, including
CPU, storage, and networking. Can apply
to the specific services within a cell or a
whole cell.

capacity cache
A Compute backend database table that
contains the current workload, amount of
free RAM, and number of VMs running
on each host. Used to determine on which
VM a host starts.

capacity cache

Glossary | 261

www.it-ebooks.info

http://www.it-ebooks.info/

capacity updater
A notification driver that monitors VM
instances and updates the capacity cache
as needed.

CAST
One of the RPC primitives used by the
OpenStack message queue software. Sends
a message and does not wait for a re‐
sponse.

catalog
A list of API endpoints that are available
to a user after authentication with the
Identity Service.

catalog service
An Identity Service that lists API end‐
points that are available to a user after au‐
thentication with the Identity Service.

ceilometer
The project name for the Telemetry ser‐
vice, which is an integrated project that
provides metering and measuring facili‐
ties for OpenStack.

cell
Provides logical partitioning of Compute
resources in a child and parent relation‐
ship. Requests are passed from parent cells
to child cells if the parent cannot provide
the requested resource.

cell forwarding
A Compute option that enables parent
cells to pass resource requests to child
cells if the parent cannot provide the re‐
quested resource.

cell manager
The Compute component that contains a
list of the current capabilities of each host
within the cell and routes requests as ap‐
propriate.

CentOS
A Linux distribution that is compatible
with OpenStack.

Ceph
Massively scalable distributed storage sys‐
tem that consists of an object store, block

store, and POSIX-compatible distributed
file system. Compatible with OpenStack.

CephFS
The POSIX-compliant file system provid‐
ed by Ceph.

certificate authority
A simple certificate authority provided by
Compute for cloudpipe VPNs and VM
image decryption.

Challenge-Handshake Authentication Protocol (CHAP)
An iSCSI authentication method support‐
ed by Compute.

chance scheduler
A scheduling method used by Compute
that randomly chooses an available host
from the pool.

changes since
A Compute API parameter that down‐
loads changes to the requested item since
your last request, instead of downloading
a new, fresh set of data and comparing it
against the old data.

Chef
An operating system configuration man‐
agement tool supporting OpenStack de‐
ployments.

child cell
If a requested resource such as CPU time,
disk storage, or memory is not available in
the parent cell, the request is forwarded to
its associated child cells. If the child cell
can fulfill the request, it does. Otherwise,
it attempts to pass the request to any of its
children.

cinder
A core OpenStack project that provides
block storage services for VMs.

Cisco neutron plug-in
A Networking plug-in for Cisco devices
and technologies, including UCS and
Nexus.

capacity updater

262 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

cloud architect
A person who plans, designs, and oversees
the creation of clouds.

cloud computing
A model that enables access to a shared
pool of configurable computing resources,
such as networks, servers, storage, appli‐
cations, and services, that can be rapidly
provisioned and released with minimal
management effort or service provider in‐
teraction.

cloud controller
Collection of Compute components that
represent the global state of the cloud;
talks to services, such as Identity Service
authentication, Object Storage, and node/
storage workers through a queue.

cloud controller node
A node that runs network, volume, API,
scheduler, and image services. Each ser‐
vice may be broken out into separate no‐
des for scalability or availability.

Cloud Data Management Interface (CDMI)
SINA standard that defines a RESTful API
for managing objects in the cloud, cur‐
rently unsupported in OpenStack.

Cloud Infrastructure Management Interface (CIMI)
An in-progress specification for cloud
management. Currently unsupported in
OpenStack.

cloud-init
A package commonly installed in VM im‐
ages that performs initialization of an in‐
stance after boot using information that it
retrieves from the metadata service, such
as the SSH public key and user data.

cloudadmin
One of the default roles in the Compute
RBAC system. Grants complete system ac‐
cess.

cloudpipe
A compute service that creates VPNs on a
per-project basis.

cloudpipe image
A pre-made VM image that serves as a
cloudpipe server. Essentially, OpenVPN
running on Linux.

CMDB
Configuration Management Database.

command filter
Lists allowed commands within the Com‐
pute rootwrap facility.

community project
A project that is not officially endorsed by
the OpenStack Foundation. If the project
is successful enough, it might be elevated
to an incubated project and then to a core
project, or it might be merged with the
main code trunk.

compression
Reducing the size of files by special en‐
coding, the file can be decompressed
again to its original content. OpenStack
supports compression at the Linux file
system level but does not support com‐
pression for things such as Object Storage
objects or Image Service VM images.

Compute
The OpenStack core project that provides
compute services. The project name of
Compute Service is nova.

Compute API
The nova-api daemon provides access to
nova services. Can communicate with
other APIs, such as the Amazon EC2 API.

compute controller
The Compute component that chooses
suitable hosts on which to start VM in‐
stances.

compute host
Physical host dedicated to running com‐
pute nodes.

compute node
A node that runs the nova-compute dae‐
mon that manages VM instances that

compute node

Glossary | 263

www.it-ebooks.info

http://www.it-ebooks.info/

provide a wide range of services, such as
web applications and analytics.

Compute Service
Name for the Compute component that
manages VMs.

compute worker
The Compute component that runs on
each compute node and manages the VM
instance life cycle, including run, reboot,
terminate, attach/detach volumes, and so
on. Provided by the nova-compute dae‐
mon.

concatenated object
A set of segment objects that Object Stor‐
age combines and sends to the client.

conductor
In Compute, conductor is the process that
proxies database requests from the com‐
pute process. Using conductor improves
security because compute nodes do not
need direct access to the database.

consistency window
The amount of time it takes for a new Ob‐
ject Storage object to become accessible to
all clients.

console log
Contains the output from a Linux VM
console in Compute.

container
Organizes and stores objects in Object
Storage. Similar to the concept of a Linux
directory but cannot be nested. Alterna‐
tive term for an Image Service container
format.

container auditor
Checks for missing replicas or incorrect
objects in specified Object Storage con‐
tainers through queries to the SQLite
backend database.

container database
A SQLite database that stores Object Stor‐
age containers and container metadata.
The container server accesses this data‐
base.

container format
A wrapper used by the Image Service that
contains a VM image and its associated
metadata, such as machine state, OS disk
size, and so on.

container server
An Object Storage server that manages
containers.

container service
The Object Storage component that pro‐
vides container services, such as create,
delete, list, and so on.

controller node
Alternative term for a cloud controller
node.

core API
Depending on context, the core API is ei‐
ther the OpenStack API or the main API
of a specific core project, such as Com‐
pute, Networking, Image Service, and so
on.

core project
An official OpenStack project. Currently
consists of Compute (nova), Object Stor‐
age (swift), Image Service (glance), Identi‐
ty (keystone), Dashboard (horizon), Net‐
working (neutron), and Block Storage
(cinder). The Telemetry module (ceilome‐
ter) and Orchestration module (heat) are
integrated projects as of the Havana re‐
lease. In the Icehouse release, the Data‐
base module (trove) gains integrated
project status.

cost
Under the Compute distributed scheduler,
this is calculated by looking at the capabil‐
ities of each host relative to the flavor of
the VM instance being requested.

credentials
Data that is only known to or accessible
by a user and used to verify that the user
is who he says he is. Credentials are pre‐
sented to the server during authentication.
Examples include a password, secret key,
digital certificate, and fingerprint.

Compute Service

264 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

Crowbar
An open source community project by
Dell that aims to provide all necessary
services to quickly deploy clouds.

current workload
An element of the Compute capacity
cache that is calculated based on the num‐
ber of build, snapshot, migrate, and resize
operations currently in progress on a giv‐
en host.

customer
Alternative term for tenant.

customization module
A user-created Python module that is
loaded by horizon to change the look and
feel of the dashboard.

daemon
A process that runs in the background
and waits for requests. May or may not
listen on a TCP or UDP port. Do not con‐
fuse with a worker.

DAC
Discretionary access control. Governs the
ability of subjects to access objects, while
enabling users to make policy decisions
and assign security attributes. The tradi‐
tional UNIX system of users, groups, and
read-write-execute permissions is an ex‐
ample of DAC.

dashboard
The web-based management interface for
OpenStack. An alternative name for hori‐
zon.

data encryption
Both Image Service and Compute support
encrypted virtual machine (VM) images
(but not instances). In-transit data en‐
cryption is supported in OpenStack using
technologies such as HTTPS, SSL, TLS,
and SSH. Object Storage does not support
object encryption at the application level
but may support storage that uses disk
encryption.

database ID
A unique ID given to each replica of an
Object Storage database.

database replicator
An Object Storage component that copies
changes in the account, container, and ob‐
ject databases to other nodes.

deallocate
The process of removing the association
between a floating IP address and a fixed
IP address. Once this association is re‐
moved, the floating IP returns to the ad‐
dress pool.

Debian
A Linux distribution that is compatible
with OpenStack.

deduplication
The process of finding duplicate data at
the disk block, file, and/or object level to
minimize storage use—currently unsup‐
ported within OpenStack.

default panel
The default panel that is displayed when a
user accesses the horizon dashboard.

default tenant
New users are assigned to this tenant if no
tenant is specified when a user is created.

default token
An Identity Service token that is not asso‐
ciated with a specific tenant and is ex‐
changed for a scoped token.

delayed delete
An option within Image Service so that an
image is deleted after a predefined num‐
ber of seconds instead of immediately.

delivery mode
Setting for the Compute RabbitMQ mes‐
sage delivery mode; can be set to either
transient or persistent.

deprecated auth
An option within Compute that enables
administrators to create and manage users

deprecated auth

Glossary | 265

www.it-ebooks.info

http://www.it-ebooks.info/

through the nova-manage command as
opposed to using the Identity Service.

developer
One of the default roles in the Compute
RBAC system and the default role as‐
signed to a new user.

device ID
Maps Object Storage partitions to physical
storage devices.

device weight
Distributes partitions proportionately
across Object Storage devices based on the
storage capacity of each device.

DevStack
Community project that uses shell scripts
to quickly build complete OpenStack de‐
velopment environments.

DHCP
Dynamic Host Configuration Protocol. A
network protocol that configures devices
that are connected to a network so that
they can communicate on that network by
using the Internet Protocol (IP). The pro‐
tocol is implemented in a client-server
model where DHCP clients request con‐
figuration data, such as an IP address, a
default route, and one or more DNS serv‐
er addresses from a DHCP server.

Diablo
A grouped release of projects related to
OpenStack that came out in the fall of
2011, the fourth release of OpenStack. It
included Compute (nova 2011.3), Object
Storage (swift 1.4.3), and the Image Ser‐
vice (glance).

direct consumer
An element of the Compute RabbitMQ
that comes to life when a RPC call is exe‐
cuted. It connects to a direct exchange
through a unique exclusive queue, sends
the message, and terminates.

direct exchange
A routing table that is created within the
Compute RabbitMQ during RPC calls;

one is created for each RPC call that is in‐
voked.

direct publisher
Element of RabbitMQ that provides a re‐
sponse to an incoming MQ message.

disassociate
The process of removing the association
between a floating IP address and fixed IP
and thus returning the floating IP address
to the address pool.

disk encryption
The ability to encrypt data at the file sys‐
tem, disk partition, or whole-disk level.
Supported within Compute VMs.

disk format
The underlying format that a disk image
for a VM is stored as within the Image
Service backend store. For example, AMI,
ISO, QCOW2, VMDK, and so on.

dispersion
In Object Storage, tools to test and ensure
dispersion of objects and containers to en‐
sure fault tolerance.

Django
A web framework used extensively in
horizon.

DNS
Domain Name Server. A hierarchical and
distributed naming system for computers,
services, and resources connected to the
Internet or a private network. Associates a
human-friendly names to IP addresses.

DNS record
A record that specifies information about
a particular domain and belongs to the
domain.

dnsmasq
Daemon that provides DNS, DHCP,
BOOTP, and TFTP services, used by the
Compute VLAN manager and FlatDHCP
manager.

developer

266 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

domain
Separates a website from other sites.
Often, the domain name has two or more
parts that are separated by dots. For ex‐
ample, yahoo.com, usa.gov, harvard.edu,
or mail.yahoo.com.

A domain is an entity or container of all
DNS-related information containing one
or more records.

Domain Name Service (DNS)
In Compute, the support that enables as‐
sociating DNS entries with floating IP ad‐
dresses, nodes, or cells so that hostnames
are consistent across reboots.

Domain Name System (DNS)
A system by which Internet domain
name-to-address and address-to-name
resolutions are determined.

DNS helps navigate the Internet by trans‐
lating the IP address into an address that
is easier to remember For example, trans‐
lating 111.111.111.1 into www.yahoo.com.

All domains and their components, such
as mail servers, utilize DNS to resolve to
the appropriate locations. DNS servers are
usually set up in a master-slave relation‐
ship such that failure of the master in‐
vokes the slave. DNS servers might also be
clustered or replicated such that changes
made to one DNS server are automatically
propagated to other active servers.

download
The transfer of data, usually in the form of
files, from one computer to another.

DRTM
Dynamic root of trust measurement.

durable exchange
The Compute RabbitMQ message ex‐
change that remains active when the serv‐
er restarts.

durable queue
A Compute RabbitMQ message queue
that remains active when the server
restarts.

Dynamic Host Configuration Protocol (DHCP)
A method to automatically configure net‐
working for a host at boot time. Provided
by both Networking and Compute.

Dynamic HyperText Markup Language (DHTML)
Pages that use HTML, JavaScript, and
Cascading Style Sheets to enable users to
interact with a web page or show simple
animation.

EBS boot volume
An Amazon EBS storage volume that con‐
tains a bootable VM image, currently un‐
supported in OpenStack.

ebtables
Used in Compute along with arptables,
iptables, and ip6tables to create firewalls
and to ensure isolation of network com‐
munications.

EC2
The Amazon commercial compute prod‐
uct, similar to Compute.

EC2 access key
Used along with an EC2 secret key to ac‐
cess the Compute EC2 API.

EC2 API
OpenStack supports accessing the Ama‐
zon EC2 API through Compute.

EC2 Compatibility API
A Compute component that enables
OpenStack to communicate with Amazon
EC2.

EC2 secret key
Used along with an EC2 access key when
communicating with the Compute EC2
API; used to digitally sign each request.

Elastic Block Storage (EBS)
The Amazon commercial block storage
product.

encryption
OpenStack supports encryption technolo‐
gies such as HTTPS, SSH, SSL, TLS, digi‐
tal certificates, and data encryption.

encryption

Glossary | 267

www.it-ebooks.info

http://www.it-ebooks.info/

endpoint
See API endpoint.

endpoint registry
Alternative term for an Identity Service
catalog.

endpoint template
A list of URL and port number endpoints
that indicate where a service, such as Ob‐
ject Storage, Compute, Identity, and so on,
can be accessed.

entity
Any piece of hardware or software that
wants to connect to the network services
provided by Networking, the network
connectivity service. An entity can make
use of Networking by implementing a
VIF.

ephemeral image
A VM image that does not save changes
made to its volumes and reverts them to
their original state after the instance is ter‐
minated.

ephemeral volume
Volume that does not save the changes
made to it and reverts to its original state
when the current user relinquishes con‐
trol.

Essex
A grouped release of projects related to
OpenStack that came out in April 2012,
the fifth release of OpenStack. It included
Compute (nova 2012.1), Object Storage
(swift 1.4.8), Image (glance), Identity
(keystone), and Dashboard (horizon).

ESX
An OpenStack-supported hypervisor.

ESXi
An OpenStack-supported hypervisor.

ebtables
Filtering tool for a Linux bridging firewall,
enabling filtering of network traffic pass‐
ing through a Linux bridge. Used to re‐
strict communications between hosts
and/or nodes in OpenStack Compute

along with iptables, arptables, and
ip6tables.

ETag
MD5 hash of an object within Object
Storage, used to ensure data integrity.

euca2ools
A collection of command-line tools for
administering VMs; most are compatible
with OpenStack.

Eucalyptus Kernel Image (EKI)
Used along with an ERI to create an EMI.

Eucalyptus Machine Image (EMI)
VM image container format supported by
Image Service.

Eucalyptus Ramdisk Image (ERI)
Used along with an EKI to create an EMI.

evacuate
The process of migrating one or all virtual
machine (VM) instances from one host to
another, compatible with both shared
storage live migration and block migra‐
tion.

exchange
Alternative term for a RabbitMQ message
exchange.

exchange type
A routing algorithm in the Compute Rab‐
bitMQ.

exclusive queue
Connected to by a direct consumer in
RabbitMQ—Compute, the message can
be consumed only by the current connec‐
tion.

extended attributes (xattrs)
File system option that enables storage of
additional information beyond owner,
group, permissions, modification time,
and so on. The underlying Object Storage
file system must support extended at‐
tributes.

endpoint

268 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

extension
Alternative term for an API extension or
plug-in. In the context of Identity Service,
this is a call that is specific to the imple‐
mentation, such as adding support for
OpenID.

extra specs
Specifies additional requirements when
Compute determines where to start a new
instance. Examples include a minimum
amount of network bandwidth or a GPU.

FakeLDAP
An easy method to create a local LDAP
directory for testing Identity Service and
Compute. Requires Redis.

fan-out exchange
Within RabbitMQ and Compute, it is the
messaging interface that is used by the
scheduler service to receive capability
messages from the compute, volume, and
network nodes.

Fedora
A Linux distribution compatible with
OpenStack.

Fibre Channel
Storage protocol similar in concept to
TCP/IP; encapsulates SCSI commands
and data.

Fibre Channel over Ethernet (FCoE)
The fibre channel protocol tunneled with‐
in Ethernet.

fill-first scheduler
The Compute scheduling method that at‐
tempts to fill a host with VMs rather than
starting new VMs on a variety of hosts.

filter
The step in the Compute scheduling pro‐
cess when hosts that cannot run VMs are
eliminated and not chosen.

firewall
Used to restrict communications between
hosts and/or nodes, implemented in
Compute using iptables, arptables,
ip6tables, and etables.

Firewall-as-a-Service (FWaaS)
A Networking extension that provides pe‐
rimeter firewall functionality.

fixed IP address
An IP address that is associated with the
same instance each time that instance
boots, is generally not accessible to end
users or the public Internet, and is used
for management of the instance.

Flat Manager
The Compute component that gives IP
addresses to authorized nodes and as‐
sumes DHCP, DNS, and routing configu‐
ration and services are provided by some‐
thing else.

flat mode injection
A Compute networking method where
the OS network configuration informa‐
tion is injected into the VM image before
the instance starts.

flat network
The Network Controller provides virtual
networks to enable compute servers to in‐
teract with each other and with the public
network. All machines must have a public
and private network interface. A flat net‐
work is a private network interface, which
is controlled by the flat_interface op‐
tion with flat managers.

FlatDHCP Manager
The Compute component that provides
dnsmasq (DHCP, DNS, BOOTP, TFTP)
and radvd (routing) services.

flavor
Alternative term for a VM instance type.

flavor ID
UUID for each Compute or Image Service
VM flavor or instance type.

floating IP address
An IP address that a project can associate
with a VM so that the instance has the
same public IP address each time that it
boots. You create a pool of floating IP ad‐
dresses and assign them to instances as

floating IP address

Glossary | 269

www.it-ebooks.info

http://www.it-ebooks.info/

they are launched to maintain a consistent
IP address for maintaining DNS assign‐
ment.

Folsom
A grouped release of projects related to
OpenStack that came out in the fall of
2012, the sixth release of OpenStack. It in‐
cludes Compute (nova), Object Storage
(swift), Identity (keystone), Networking
(neutron), Image Service (glance), and
Volumes or Block Storage (cinder).

FormPost
Object Storage middleware that uploads
(posts) an image through a form on a web
page.

frontend
The point where a user interacts with a
service; can be an API endpoint, the hori‐
zon dashboard, or a command-line tool.

gateway
Hardware or software that translates be‐
tween two different protocols.

glance
A core project that provides the Open‐
Stack Image Service.

glance API server
Processes client requests for VMs, updates
Image Service metadata on the registry
server, and communicates with the store
adapter to upload VM images from the
backend store.

glance registry
Alternative term for the Image Service
image registry.

global endpoint template
The Identity Service endpoint template
that contains services available to all ten‐
ants.

GlusterFS
A file system designed to aggregate NAS
hosts, compatible with OpenStack.

golden image
A method of operating system installation
where a finalized disk image is created
and then used by all nodes without modi‐
fication.

Graphic Interchange Format (GIF)
A type of image file that is commonly
used for animated images on web pages.

Graphics Processing Unit (GPU)
Choosing a host based on the existence of
a GPU is currently unsupported in Open‐
Stack.

Green Threads
The cooperative threading model used by
Python; reduces race conditions and only
context switches when specific library
calls are made. Each OpenStack service is
its own thread.

Grizzly
Project name for the seventh release of
OpenStack.

guest OS
An operating system instance running un‐
der the control of a hypervisor.

Hadoop
Apache Hadoop is an open source soft‐
ware framework that supports data-
intensive distributed applications.

handover
An object state in Object Storage where a
new replica of the object is automatically
created due to a drive failure.

hard reboot
A type of reboot where a physical or virtu‐
al power button is pressed as opposed to a
graceful, proper shutdown of the operat‐
ing system.

Havana
Project name for the eighth release of
OpenStack.

Folsom

270 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

heat
An integrated project that aims to orches‐
trate multiple cloud applications for
OpenStack.

horizon
OpenStack project that provides a dash‐
board, which is a web interface.

horizon plug-in
A plug-in for the OpenStack dashboard
(horizon).

host
A physical computer, not a VM instance
(node).

host aggregate
A method to further subdivide availability
zones into hypervisor pools, a collection
of common hosts.

Host Bus Adapter (HBA)
Device plugged into a PCI slot, such as a
fibre channel or network card.

HTTP
Hypertext Transfer Protocol. HTTP is an
application protocol for distributed, col‐
laborative, hypermedia information sys‐
tems. It is the foundation of data commu‐
nication for the World Wide Web. Hyper‐
text is structured text that uses logical
links (hyperlinks) between nodes contain‐
ing text. HTTP is the protocol to ex‐
change or transfer hypertext.

HTTPS
Hypertext Transfer Protocol Secure
(HTTPS) is a communications protocol
for secure communication over a comput‐
er network, with especially wide deploy‐
ment on the Internet. Technically, it is not
a protocol in and of itself; rather, it is the
result of simply layering the Hypertext
Transfer Protocol (HTTP) on top of the
SSL/TLS protocol, thus adding the securi‐
ty capabilities of SSL/TLS to standard
HTTP communications.

Hyper-V
One of the hypervisors supported by
OpenStack.

hyperlink
Any kind of text that contains a link to
some other site, commonly found in
documents where clicking on a word or
words opens up a different website.

Hypertext Transfer Protocol (HTTP)
The protocol that tells browsers where to
go to find information.

Hypertext Transfer Protocol Secure (HTTPS)
Encrypted HTTP communications using
SSL or TLS; most OpenStack API end‐
points and many inter-component com‐
munications support HTTPS communica‐
tion.

hypervisor
Software that arbitrates and controls VM
access to the actual underlying hardware.

hypervisor pool
A collection of hypervisors grouped to‐
gether through host aggregates.

IaaS
Infrastructure-as-a-Service. IaaS is a pro‐
visioning model in which an organization
outsources physical components of a data
center, such as storage, hardware, servers,
and networking components. A service
provider owns the equipment and is re‐
sponsible for housing, operating and
maintaining it. The client typically pays
on a per-use basis. IaaS is a model for pro‐
viding cloud services.

Icehouse
Project name for the ninth release of
OpenStack.

ID number
Unique numeric ID associated with each
user in Identity Service, conceptually sim‐
ilar to a Linux or LDAP UID.

Identity API
Alternative term for the Identity Service
API.

Identity API

Glossary | 271

www.it-ebooks.info

http://www.it-ebooks.info/

Identity backend
The source used by Identity Service to re‐
trieve user information; an OpenLDAP
server, for example.

Identity Service
The OpenStack core project that provides
a central directory of users mapped to the
OpenStack services they can access. It also
registers endpoints for OpenStack serv‐
ices. It acts as a common authentication
system. The project name of the Identity
Service is keystone.

Identity Service API
The API used to access the OpenStack
Identity Service provided through key‐
stone.

IDS
Intrusion Detection System.

image
A collection of files for a specific operat‐
ing system (OS) that you use to create or
rebuild a server. OpenStack provides pre-
built images. You can also create custom
images, or snapshots, from servers that
you have launched. Custom images can be
used for data backups or as “gold” images
for additional servers.

Image API
The Image Service API endpoint for man‐
agement of VM images.

image cache
Used by Image Service to obtain images
on the local host rather than re-
downloading them from the image server
each time one is requested.

image ID
Combination of a URI and UUID used to
access Image Service VM images through
the image API.

image membership
A list of tenants that can access a given
VM image within Image Service.

image owner
The tenant who owns an Image Service
virtual machine image.

image registry
A list of VM images that are available
through Image Service.

Image Service
An OpenStack core project that provides
discovery, registration, and delivery serv‐
ices for disk and server images. The
project name of the Image Service is
glance.

Image Service API
Alternative name for the glance image
API.

image status
The current status of a VM image in Im‐
age Service, not to be confused with the
status of a running instance.

image store
The backend store used by Image Service
to store VM images, options include Ob‐
ject Storage, local file system, S3, or
HTTP.

image UUID
UUID used by Image Service to uniquely
identify each VM image.

incubated project
A community project may be elevated to
this status and is then promoted to a core
project.

ingress filtering
The process of filtering incoming network
traffic. Supported by Compute.

injection
The process of putting a file into a virtual
machine image before the instance is
started.

instance
A running VM, or a VM in a known state
such as suspended, that can be used like a
hardware server.

Identity backend

272 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

instance ID
Alternative term for instance UUID.

instance state
The current state of a guest VM image.

instance type
Describes the parameters of the various
virtual machine images that are available
to users; includes parameters such as
CPU, storage, and memory. Alternative
term for flavor.

instance type ID
Alternative term for a flavor ID.

instance UUID
Unique ID assigned to each guest VM
instance.

interface ID
Unique ID for a Networking VIF or vNIC
in the form of a UUID.

Internet Service Provider (ISP)
Any business that provides Internet access
to individuals or businesses.

ironic
OpenStack project that provisions bare
metal, as opposed to virtual, machines.

IP address
Number that is unique to every computer
system on the Internet. Two versions of
the Internet Protocol (IP) are in use for
addresses: IPv4 and IPv6.

IP Address Management (IPAM)
The process of automating IP address al‐
location, deallocation, and management.
Currently provided by Compute, melange,
and Networking.

IPL
Initial Program Loader.

IPMI
Intelligent Platform Management Inter‐
face. IPMI is a standardized computer sys‐
tem interface used by system administra‐
tors for out-of-band management of com‐
puter systems and monitoring of their

operation. In layman’s terms, it is a way to
manage a computer using a direct net‐
work connection, whether it is turned on
or not; connecting to the hardware rather
than an operating system or login shell.

ip6tables
Tool used to set up, maintain, and inspect
the tables of IPv6 packet filter rules in the
Linux kernel. In OpenStack Compute,
ip6tables is used along with arptables, ebt‐
ables, and iptables to create firewalls for
both nodes and VMs.

iptables
Used along with arptables and ebtables,
iptables create firewalls in Compute. ipta‐
bles are the tables provided by the Linux
kernel firewall (implemented as different
Netfilter modules) and the chains and
rules it stores. Different kernel modules
and programs are currently used for dif‐
ferent protocols: iptables applies to IPv4,
ip6tables to IPv6, arptables to ARP, and
ebtables to Ethernet frames. Requires root
privilege to manipulate.

iSCSI
The SCSI disk protocol tunneled within
Ethernet, supported by Compute, Object
Storage, and Image Service.

ISO9960
One of the VM image disk formats sup‐
ported by Image Service.

itsec
A default role in the Compute RBAC sys‐
tem that can quarantine an instance in
any project.

Java
A programming language that is used to
create systems that involve more than one
computer by way of a network.

JavaScript
A scripting language that is used to build
web pages.

JavaScript

Glossary | 273

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Object Notation (JSON)
One of the supported response formats in
OpenStack.

Jenkins
Tool used to run jobs automatically for
OpenStack development.

Juno
Project name for the 10th release of
OpenStack.

kernel-based VM (KVM)
An OpenStack-supported hypervisor.

keystone
The project that provides OpenStack
Identity services.

Kickstart
A tool to automate system configuration
and installation on Red Hat, Fedora, and
CentOS-based Linux distributions.

large object
An object within Object Storage that is
larger than 5 GB.

Launchpad
The collaboration site for OpenStack.

Layer-2 network
Term used for OSI network architecture
for the data link layer.

libvirt
Virtualization API library used by Open‐
Stack to interact with many of its support‐
ed hypervisors.

Linux bridge
Software that enables multiple VMs to
share a single physical NIC within Com‐
pute.

Linux Bridge neutron plug-in
Enables a Linux bridge to understand a
Networking port, interface attachment,
and other abstractions.

Linux containers (LXC)
An OpenStack-supported hypervisor.

live migration
The ability within Compute to move run‐
ning virtual machine instances from one
host to another with only a small service
interruption during switchover.

load balancer
A load balancer is a logical device that be‐
longs to a cloud account. It is used to dis‐
tribute workloads between multiple back‐
end systems or services, based on the cri‐
teria defined as part of its configuration.

load balancing
The process of spreading client requests
between two or more nodes to improve
performance and availability.

Load-Balancing-as-a-Service (LBaaS)
Enables Networking to distribute incom‐
ing requests evenly between designated
instances.

management API
Alternative term for an admin API.

management network
A network segment used for administra‐
tion, not accessible to the public Internet.

manager
Logical groupings of related code, such as
the Block Storage volume manager or net‐
work manager.

manifest
Used to track segments of a large object
within Object Storage.

manifest object
A special Object Storage object that con‐
tains the manifest for a large object.

marconi
OpenStack project that provides a queue
service to applications.

melange
Project name for OpenStack Network In‐
formation Service. To be merged with
Networking.

JavaScript Object Notation (JSON)

274 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

membership
The association between an Image Service
VM image and a tenant. Enables images
to be shared with specified tenants.

membership list
A list of tenants that can access a given
VM image within Image Service.

memcached
A distributed memory object caching sys‐
tem that is used by Object Storage for
caching.

memory overcommit
The ability to start new VM instances
based on the actual memory usage of a
host, as opposed to basing the decision on
the amount of RAM each running in‐
stance thinks it has available. Also known
as RAM overcommit.

message broker
The software package used to provide
AMQP messaging capabilities within
Compute. Default package is RabbitMQ.

message bus
The main virtual communication line
used by all AMQP messages for inter-
cloud communications within Compute.

message queue
Passes requests from clients to the appro‐
priate workers and returns the output to
the client after the job completes.

Meta-Data Server (MDS)
Stores CephFS metadata.

migration
The process of moving a VM instance
from one host to another.

multinic
Facility in Compute that allows each vir‐
tual machine instance to have more than
one VIF connected to it.

Modular Layer 2 (ML2) neutron plug-in
Can concurrently use multiple layer-2 net‐
working technologies, such as 802.1Q and
VXLAN, in Networking.

Monitor (LBaaS)
LBaaS feature that provides availability
monitoring using the ping command,
TCP, and HTTP/HTTPS GET.

Monitor (Mon)
A Ceph component that communicates
with external clients, checks data state and
consistency, and performs quorum func‐
tions.

multi-factor authentication
Authentication method that uses two or
more credentials, such as a password and
a private key. Currently not supported in
Identity Service.

MultiNic
Facility in Compute that enables a virtual
machine instance to have more than one
VIF connected to it.

Nebula
Released as open source by NASA in 2010
and is the basis for Compute.

netadmin
One of the default roles in the Compute
RBAC system. Enables the user to allocate
publicly accessible IP addresses to instan‐
ces and change firewall rules.

NetApp volume driver
Enables Compute to communicate with
NetApp storage devices through the
NetApp OnCommand Provisioning
Manager.

network
A virtual network that provides connec‐
tivity between entities. For example, a col‐
lection of virtual ports that share network
connectivity. In Networking terminology,
a network is always a layer-2 network.

Network Address Translation (NAT)
The process of modifying IP address in‐
formation while in transit. Supported by
Compute and Networking.

network controller
A Compute daemon that orchestrates the
network configuration of nodes, including

network controller

Glossary | 275

www.it-ebooks.info

http://www.it-ebooks.info/

IP addresses, VLANs, and bridging. Also
manages routing for both public and pri‐
vate networks.

Network File System (NFS)
A method for making file systems avail‐
able over the network. Supported by
OpenStack.

network ID
Unique ID assigned to each network seg‐
ment within Networking. Same as net‐
work UUID.

network manager
The Compute component that manages
various network components, such as fire‐
wall rules, IP address allocation, and so
on.

network node
Any compute node that runs the network
worker daemon.

network segment
Represents a virtual, isolated OSI layer-2
subnet in Networking.

Network Time Protocol (NTP)
A method of keeping a clock for a host or
node correct through communications
with a trusted, accurate time source.

network UUID
Unique ID for a Networking network
segment.

network worker
The nova-network worker daemon; pro‐
vides services such as giving an IP address
to a booting nova instance.

Networking
A core OpenStack project that provides a
network connectivity abstraction layer to
OpenStack Compute. The project name of
Networking is neutron.

Networking API
API used to access OpenStack Network‐
ing. Provides an extensible architecture to
enable custom plug-in creation.

neutron
A core OpenStack project that provides a
network connectivity abstraction layer to
OpenStack Compute.

neutron API
An alternative name for Networking API.

neutron manager
Enables Compute and Networking inte‐
gration, which enables Networking to per‐
form network management for guest
VMs.

neutron plug-in
Interface within Networking that enables
organizations to create custom plug-ins
for advanced features, such as QoS, ACLs,
or IDS.

Nexenta volume driver
Provides support for NexentaStor devices
in Compute.

No ACK
Disables server-side message acknowledg‐
ment in the Compute RabbitMQ. Increa‐
ses performance but decreases reliability.

node
A VM instance that runs on a host.

non-durable exchange
Message exchange that is cleared when the
service restarts. Its data is not written to
persistent storage.

non-durable queue
Message queue that is cleared when the
service restarts. Its data is not written to
persistent storage.

non-persistent volume
Alternative term for an ephemeral vol‐
ume.

nova
OpenStack project that provides compute
services.

Nova API
Alternative term for the Compute API.

Network File System (NFS)

276 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

nova-network
A Compute component that manages IP
address allocation, firewalls, and other
network-related tasks. This is the legacy
networking option and an alternative to
Networking.

object
A BLOB of data held by Object Storage;
can be in any format.

object auditor
Opens all objects for an object server and
verifies the MD5 hash, size, and metadata
for each object.

object expiration
A configurable option within Object Stor‐
age to automatically delete objects after a
specified amount of time has passed or a
certain date is reached.

object hash
Uniquely ID for an Object Storage object.

object path hash
Used by Object Storage to determine the
location of an object in the ring. Maps ob‐
jects to partitions.

object replicator
An Object Storage component that copies
an object to remote partitions for fault tol‐
erance.

object server
An Object Storage component that is re‐
sponsible for managing objects.

Object Storage
The OpenStack core project that provides
eventually consistent and redundant stor‐
age and retrieval of fixed digital content.
The project name of OpenStack Object
Storage is swift.

Object Storage API
API used to access OpenStack Object
Storage.

Object Storage Device (OSD)
The Ceph storage daemon.

object versioning
Allows a user to set a flag on an Object
Storage container so that all objects within
the container are versioned.

Oldie
Term for an Object Storage process that
runs for a long time. Can indicate a hung
process.

Open Cloud Computing Interface (OCCI)
A standardized interface for managing
compute, data, and network resources,
currently unsupported in OpenStack.

Open Virtualization Format (OVF)
Standard for packaging VM images. Sup‐
ported in OpenStack.

Open vSwitch neutron plug-in
Provides support for Open vSwitch in
Networking.

OpenLDAP
An open source LDAP server. Supported
by both Compute and Identity Service.

OpenStack
OpenStack is a cloud operating system
that controls large pools of compute, stor‐
age, and networking resources throughout
a data center, all managed through a dash‐
board that gives administrators control
while empowering their users to provision
resources through a web interface. Open‐
Stack is an open source project licensed
under the Apache License 2.0.

openSUSE
A Linux distribution that is compatible
with OpenStack.

operator
The person responsible for planning and
maintaining an OpenStack installation.

Orchestration
An integrated project that orchestrates
multiple cloud applications for Open‐
Stack. The project name of Orchestration
is heat.

Orchestration

Glossary | 277

www.it-ebooks.info

http://www.it-ebooks.info/

orphan
In the context of Object Storage, this is a
process that is not terminated after an up‐
grade, restart, or reload of the service.

parent cell
If a requested resource, such as CPU time,
disk storage, or memory, is not available
in the parent cell, the request is forwarded
to associated child cells.

partition
A unit of storage within Object Storage
used to store objects. It exists on top of
devices and is replicated for fault toler‐
ance.

partition index
Contains the locations of all Object Stor‐
age partitions within the ring.

partition shift value
Used by Object Storage to determine
which partition data should reside on.

pause
A VM state where no changes occur (no
changes in memory, network communica‐
tions stop, etc); the VM is frozen but not
shut down.

PCI passthrough
Gives guest VMs exclusive access to a PCI
device. Currently supported in OpenStack
Havana and later releases.

persistent message
A message that is stored both in memory
and on disk. The message is not lost after
a failure or restart.

persistent volume
Changes to these types of disk volumes
are saved.

personality file
A file used to customize a Compute in‐
stance. It can be used to inject SSH keys or
a specific network configuration.

Platform-as-a-Service (PaaS)
Provides to the consumer the ability to
deploy applications through a program‐

ming language or tools supported by the
cloud platform provider. An example of
Platform-as-a-Service is an Eclipse/Java
programming platform provided with no
downloads required.

plug-in
Software component providing the actual
implementation for Networking APIs, or
for Compute APIs, depending on the con‐
text.

policy service
Component of Identity Service that pro‐
vides a rule-management interface and a
rule-based authorization engine.

port
A virtual network port within Network‐
ing; VIFs / vNICs are connected to a port.

port UUID
Unique ID for a Networking port.

preseed
A tool to automate system configuration
and installation on Debian-based Linux
distributions.

private image
An Image Service VM image that is only
available to specified tenants.

private IP address
An IP address used for management and
administration, not available to the public
Internet.

private network
The Network Controller provides virtual
networks to enable compute servers to in‐
teract with each other and with the public
network. All machines must have a public
and private network interface. A private
network interface can be a flat or VLAN
network interface. A flat network interface
is controlled by the flat_interface with flat
managers. A VLAN network interface is
controlled by the vlan_interface option
with VLAN managers.

orphan

278 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

project
A logical grouping of users within Com‐
pute; defines quotas and access to VM
images.

project ID
User-defined alphanumeric string in
Compute; the name of a project.

project VPN
Alternative term for a cloudpipe.

provider
An administrator who has access to all
hosts and instances.

proxy node
A node that provides the Object Storage
proxy service.

proxy server
Users of Object Storage interact with the
service through the proxy server, which in
turn looks up the location of the requested
data within the ring and returns the re‐
sults to the user.

public API
An API endpoint used for both service-
to-service communication and end-user
interactions.

public image
An Image Service VM image that is avail‐
able to all tenants.

public IP address
An IP address that is accessible to end-
users.

public network
The Network Controller provides virtual
networks to enable compute servers to in‐
teract with each other and with the public
network. All machines must have a public
and private network interface. The public
network interface is controlled by the pub
lic_interface option.

Puppet
An operating system configuration-
management tool supported by Open‐
Stack.

Python
Programming language used extensively
in OpenStack.

QEMU Copy On Write 2 (QCOW2)
One of the VM image disk formats sup‐
ported by Image Service.

Qpid
Message queue software supported by
OpenStack; an alternative to RabbitMQ.

quarantine
If Object Storage finds objects, containers,
or accounts that are corrupt, they are
placed in this state, are not replicated,
cannot be read by clients, and a correct
copy is re-replicated.

Quick EMUlator (QEMU)
QEMU is a generic and open source ma‐
chine emulator and virtualizer.

One of the hypervisors supported by
OpenStack, generally used for develop‐
ment purposes.

quota
In Compute and Block Storage, the ability
to set resource limits on a per-project
basis.

RabbitMQ
The default message queue software used
by OpenStack.

Rackspace Cloud Files
Released as open source by Rackspace in
2010; the basis for Object Storage.

RADOS Block Device (RBD)
Ceph component that enables a Linux
block device to be striped over multiple
distributed data stores.

radvd
The router advertisement daemon, used
by the Compute VLAN manager and
FlatDHCP manager to provide routing
services for VM instances.

radvd

Glossary | 279

www.it-ebooks.info

http://www.it-ebooks.info/

RAM filter
The Compute setting that enables or disa‐
bles RAM overcommitment.

RAM overcommit
The ability to start new VM instances
based on the actual memory usage of a
host, as opposed to basing the decision on
the amount of RAM each running in‐
stance thinks it has available. Also known
as memory overcommit.

rate limit
Configurable option within Object Stor‐
age to limit database writes on a per-
account and/or per-container basis.

raw
One of the VM image disk formats sup‐
ported by Image Service; an unstructured
disk image.

rebalance
The process of distributing Object Storage
partitions across all drives in the ring;
used during initial ring creation and after
ring reconfiguration.

reboot
Either a soft or hard reboot of a server.
With a soft reboot, the operating system is
signaled to restart, which enables a grace‐
ful shutdown of all processes. A hard re‐
boot is the equivalent of power cycling the
server. The virtualization platform should
ensure that the reboot action has comple‐
ted successfully, even in cases in which the
underlying domain/VM is paused or hal‐
ted/stopped.

rebuild
Removes all data on the server and repla‐
ces it with the specified image. Server ID
and IP addresses remain the same.

Recon
An Object Storage component that col‐
lects metrics.

record
Belongs to a particular domain and is
used to specify information about the

domain. There are several types of DNS
records. Each record type contains partic‐
ular information used to describe the pur‐
pose of that record. Examples include
mail exchange (MX) records, which speci‐
fy the mail server for a particular domain;
and name server (NS) records, which
specify the authoritative name servers for
a domain.

record ID
A number within a database that is incre‐
mented each time a change is made. Used
by Object Storage when replicating.

Red Hat Enterprise Linux (RHEL)
A Linux distribution that is compatible
with OpenStack.

reference architecture
A recommended architecture for an
OpenStack cloud.

region
A discrete OpenStack environment with
dedicated API endpoints that typically
shares only the Identity Service (keystone)
with other regions.

registry
Alternative term for the Image Service
registry.

registry server
An Image Service that provides VM im‐
age metadata information to clients.

Reliable, Autonomic Distributed Object Store (RADOS)
A collection of components that provides
object storage within Ceph. Similar to
OpenStack Object Storage.

Remote Procedure Call (RPC)
The method used by the Compute Rab‐
bitMQ for intra-service communications.

replica
Provides data redundancy and fault toler‐
ance by creating copies of Object Storage
objects, accounts, and containers so that
they are not lost when the underlying
storage fails.

RAM filter

280 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

replica count
The number of replicas of the data in an
Object Storage ring.

replication
The process of copying data to a separate
physical device for fault tolerance and
performance.

replicator
The Object Storage backend process that
creates and manages object replicas.

request ID
Unique ID assigned to each request sent
to Compute.

rescue image
A special type of VM image that is booted
when an instance is placed into rescue
mode. Allows an administrator to mount
the file systems for an instance to correct
the problem.

resize
Converts an existing server to a different
flavor, which scales the server up or down.
The original server is saved to enable roll‐
back if a problem occurs. All resizes must
be tested and explicitly confirmed, at
which time the original server is removed.

RESTful
A kind of web service API that uses REST,
or Representational State Transfer. REST
is the style of architecture for hypermedia
systems that is used for the World Wide
Web.

ring
An entity that maps Object Storage data to
partitions. A separate ring exists for each
service, such as account, object, and con‐
tainer.

ring builder
Builds and manages rings within Object
Storage, assigns partitions to devices, and
pushes the configuration to other storage
nodes.

Role Based Access Control (RBAC)
Provides a predefined list of actions that
the user can perform, such as start or stop
VMs, reset passwords, and so on. Sup‐
ported in both Identity Service and Com‐
pute and can be configured using the ho‐
rizon dashboard.

role
A personality that a user assumes to per‐
form a specific set of operations. A role
includes a set of rights and privileges. A
user assuming that role inherits those
rights and privileges.

role ID
Alphanumeric ID assigned to each Identi‐
ty Service role.

rootwrap
A feature of Compute that allows the un‐
privileged “nova” user to run a specified
list of commands as the Linux root user.

round-robin scheduler
Type of Compute scheduler that evenly
distributes instances among available
hosts.

routing key
The Compute direct exchanges, fanout ex‐
changes, and topic exchanges use this key
to determine how to process a message;
processing varies depending on exchange
type.

RPC driver
Modular system that allows the underly‐
ing message queue software of Compute
to be changed. For example, from Rab‐
bitMQ to ZeroMQ or Qpid.

rsync
Used by Object Storage to push object
replicas.

RXTX cap
Absolute limit on the amount of network
traffic a Compute VM instance can send
and receive.

RXTX cap

Glossary | 281

www.it-ebooks.info

http://www.it-ebooks.info/

RXTX quota
Soft limit on the amount of network traf‐
fic a Compute VM instance can send and
receive.

Ryu neutron plug-in
Enables the Ryu network operating sys‐
tem to function as a Networking Open‐
Flow controller.

S3
Object storage service by Amazon; similar
in function to Object Storage, it can act as
a backend store for Image Service VM
images.

sahara
OpenStack project that provides a scalable
data-processing stack and associated man‐
agement interfaces.

scheduler manager
A Compute component that determines
where VM instances should start. Uses
modular design to support a variety of
scheduler types.

scoped token
An Identity Service API access token that
is associated with a specific tenant.

scrubber
Checks for and deletes unused VMs; the
component of Image Service that imple‐
ments delayed delete.

secret key
String of text known only by the user;
used along with an access key to make re‐
quests to the Compute API.

secure shell (SSH)
Open source tool used to access remote
hosts through an encrypted communica‐
tions channel, SSH key injection is sup‐
ported by Compute.

security group
A set of network traffic filtering rules that
are applied to a Compute instance.

segmented object
An Object Storage large object that has
been broken up into pieces. The re-
assembled object is called a concatenated
object.

server
Computer that provides explicit services
to the client software running on that sys‐
tem, often managing a variety of comput‐
er operations.

A server is a VM instance in the Compute
system. Flavor and image are requisite ele‐
ments when creating a server.

server image
Alternative term for a VM image.

server UUID
Unique ID assigned to each guest VM
instance.

service
An OpenStack service, such as Compute,
Object Storage, or Image Service. Provides
one or more endpoints through which
users can access resources and perform
operations.

service catalog
Alternative term for the Identity Service
catalog.

service ID
Unique ID assigned to each service that is
available in the Identity Service catalog.

service registration
An Identity Service feature that enables
services, such as Compute, to automati‐
cally register with the catalog.

service tenant
Special tenant that contains all services
that are listed in the catalog.

service token
An administrator-defined token used by
Compute to communicate securely with
the Identity Service.

RXTX quota

282 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

session backend
The method of storage used by horizon to
track client sessions, such as local memo‐
ry, cookies, a database, or memcached.

session persistence
A feature of the load-balancing service. It
attempts to force subsequent connections
to a service to be redirected to the same
node as long as it is online.

session storage
A horizon component that stores and
tracks client session information. Imple‐
mented through the Django sessions
framework.

shared IP address
An IP address that can be assigned to a
VM instance within the shared IP group.
Public IP addresses can be shared across
multiple servers for use in various high-
availability scenarios. When an IP address
is shared to another server, the cloud net‐
work restrictions are modified to enable
each server to listen to and respond on
that IP address. You can optionally specify
that the target server network configura‐
tion be modified. Shared IP addresses can
be used with many standard heartbeat fa‐
cilities, such as keepalive, that monitor for
failure and manage IP failover.

shared IP group
A collection of servers that can share IPs
with other members of the group. Any
server in a group can share one or more
public IPs with any other server in the
group. With the exception of the first
server in a shared IP group, servers must
be launched into shared IP groups. A
server may be a member of only one
shared IP group.

shared storage
Block storage that is simultaneously acces‐
sible by multiple clients, for example,
NFS.

Sheepdog
Distributed block storage system for QE‐
MU, supported by OpenStack.

Simple Cloud Identity Management (SCIM)
Specification for managing identity in the
cloud, currently unsupported by Open‐
Stack.

Single-root I/O Virtualization (SR-IOV)
A specification that, when implemented
by a physical PCIe device, enables it to ap‐
pear as multiple separate PCIe devices.
This enables multiple virtualized guests to
share direct access to the physical device,
offering improved performance over an
equivalent virtual device. Currently sup‐
ported in OpenStack Havana and later
releases.

SmokeStack
Runs automated tests against the core
OpenStack API; written in Rails.

snapshot
A point-in-time copy of an OpenStack
storage volume or image. Use storage vol‐
ume snapshots to back up volumes. Use
image snapshots to back up data, or as
“gold” images for additional servers.

soft reboot
A controlled reboot where a VM instance
is properly restarted through operating
system commands.

SolidFire Volume Driver
The Block Storage driver for the SolidFire
iSCSI storage appliance.

SPICE
The Simple Protocol for Independent
Computing Environments (SPICE) pro‐
vides remote desktop access to guest vir‐
tual machines. It is an alternative to VNC.
SPICE is supported by OpenStack.

spread-first scheduler
The Compute VM scheduling algorithm
that attempts to start a new VM on the
host with the least amount of load.

SQL-Alchemy
An open source SQL toolkit for Python,
used in OpenStack.

SQL-Alchemy

Glossary | 283

www.it-ebooks.info

http://www.it-ebooks.info/

SQLite
A lightweight SQL database, used as the
default persistent storage method in many
OpenStack services.

StackTach
Community project that captures Com‐
pute AMQP communications; useful for
debugging.

static IP address
Alternative term for a fixed IP address.

StaticWeb
WSGI middleware component of Object
Storage that serves container data as a
static web page.

storage backend
The method that a service uses for persis‐
tent storage, such as iSCSI, NFS, or local
disk.

storage node
An Object Storage node that provides
container services, account services, and
object services; controls the account data‐
bases, container databases, and object
storage.

storage manager
A XenAPI component that provides a
pluggable interface to support a wide vari‐
ety of persistent storage backends.

storage manager backend
A persistent storage method supported by
XenAPI, such as iSCSI or NFS.

storage services
Collective name for the Object Storage
object services, container services, and ac‐
count services.

strategy
Specifies the authentication source used
by Image Service or Identity Service.

subdomain
A domain within a parent domain. Sub‐
domains cannot be registered. Subdo‐
mains enable you to delegate domains.
Subdomains can themselves have subdo‐

mains, so third-level, fourth-level, fifth-
level, and deeper levels of nesting are pos‐
sible.

SUSE Linux Enterprise Server (SLES)
A Linux distribution that is compatible
with OpenStack.

suspend
Alternative term for a paused VM
instance.

swap
Disk-based virtual memory used by oper‐
ating systems to provide more memory
than is actually available on the system.

swawth
An authentication and authorization ser‐
vice for Object Storage, implemented
through WSGI middleware; uses Object
Storage itself as the persistent backing
store.

swift
An OpenStack core project that provides
object storage services.

swift All in One (SAIO)
Creates a full Object Storage development
environment within a single VM.

swift middleware
Collective term for Object Storage com‐
ponents that provide additional function‐
ality.

swift proxy server
Acts as the gatekeeper to Object Storage
and is responsible for authenticating the
user.

swift storage node
A node that runs Object Storage account,
container, and object services.

sync point
Point in time since the last container and
accounts database sync among nodes
within Object Storage.

SQLite

284 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

sysadmin
One of the default roles in the Compute
RBAC system. Enables a user to add other
users to a project, interact with VM im‐
ages that are associated with the project,
and start and stop VM instances.

system usage
A Compute component that, along with
the notification system, collects metrics
and usage information. This information
can be used for billing.

Telemetry
An integrated project that provides meter‐
ing and measuring facilities for Open‐
Stack. The project name of Telemetry is
ceilometer.

TempAuth
An authentication facility within Object
Storage that enables Object Storage itself
to perform authentication and authoriza‐
tion. Frequently used in testing and devel‐
opment.

Tempest
Automated software test suite designed to
run against the trunk of the OpenStack
core project.

TempURL
An Object Storage middleware compo‐
nent that enables creation of URLs for
temporary object access.

tenant
A group of users; used to isolate access to
Compute resources. An alternative term
for a project.

Tenant API
An API that is accessible to tenants.

tenant endpoint
An Identity Service API endpoint that is
associated with one or more tenants.

tenant ID
Unique ID assigned to each tenant within
the Identity Service. The project IDs map
to the tenant IDs.

token
An alpha-numeric string of text used to
access OpenStack APIs and resources.

token services
An Identity Service component that man‐
ages and validates tokens after a user or
tenant has been authenticated.

tombstone
Used to mark Object Storage objects that
have been deleted; ensures that the object
is not updated on another node after it
has been deleted.

topic publisher
A process that is created when a RPC call
is executed; used to push the message to
the topic exchange.

Torpedo
Community project used to run automa‐
ted tests against the OpenStack API.

transaction ID
Unique ID assigned to each Object Stor‐
age request; used for debugging and
tracing.

transient
Alternative term for non-durable.

transient exchange
Alternative term for a non-durable
exchange.

transient message
A message that is stored in memory and is
lost after the server is restarted.

transient queue
Alternative term for a non-durable queue.

trove
OpenStack project that provides database
services to applications.

Ubuntu
A Debian-based Linux distribution.

unscoped token
Alternative term for an Identity Service
default token.

unscoped token

Glossary | 285

www.it-ebooks.info

http://www.it-ebooks.info/

updater
Collective term for a group of Object
Storage components that processes
queued and failed updates for containers
and objects.

user
In Identity Service, each user is associated
with one or more tenants, and in Com‐
pute can be associated with roles, projects,
or both.

user data
A blob of data that can be specified by the
user when launching an instance. This da‐
ta can be accessed by the instance through
the metadata service or config drive.
Commonly used for passing a shell script
that is executed by the instance on boot.

User Mode Linux (UML)
An OpenStack-supported hypervisor.

VIF UUID
Unique ID assigned to each Networking
VIF.

Virtual Central Processing Unit (vCPU)
Subdivides physical CPUs. Instances can
then use those divisions.

Virtual Disk Image (VDI)
One of the VM image disk formats sup‐
ported by Image Service.

Virtual Hard Disk (VHD)
One of the VM image disk formats sup‐
ported by Image Service.

virtual IP
An Internet Protocol (IP) address config‐
ured on the load balancer for use by cli‐
ents connecting to a service that is load
balanced. Incoming connections are dis‐
tributed to backend nodes based on the
configuration of the load balancer.

virtual machine (VM)
An operating system instance that runs on
top of a hypervisor. Multiple VMs can run
at the same time on the same physical
host.

virtual network
An L2 network segment within Network‐
ing.

Virtual Network Computing (VNC)
Open source GUI and CLI tools used for
remote console access to VMs. Supported
by Compute.

Virtual Network InterFace (VIF)
An interface that is plugged into a port in
a Networking network. Typically a virtual
network interface belonging to a VM.

virtual port
Attachment point where a virtual interface
connects to a virtual network.

virtual private network (VPN)
Provided by Compute in the form of
cloudpipes, specialized instances that are
used to create VPNs on a per-project
basis.

virtual server
Alternative term for a VM or guest.

virtual switch (vSwitch)
Software that runs on a host or node and
provides the features and functions of a
hardware-based network switch.

virtual VLAN
Alternative term for a virtual network.

VirtualBox
An OpenStack-supported hypervisor.

VLAN manager
A Compute component that provides
dnsmasq and radvd and sets up forward‐
ing to and from cloudpipe instances.

VLAN network
The Network Controller provides virtual
networks to enable compute servers to in‐
teract with each other and with the public
network. All machines must have a public
and private network interface. A VLAN
network is a private network interface,
which is controlled by the vlan_inter
face option with VLAN managers.

updater

286 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

VM disk (VMDK)
One of the VM image disk formats sup‐
ported by Image Service.

VM image
Alternative term for an image.

VM Remote Control (VMRC)
Method to access VM instance consoles
using a web browser. Supported by Com‐
pute.

VMware API
Supports interaction with VMware prod‐
ucts in Compute.

VMware NSX Neutron plug-in
Provides support for VMware NSX in
Neutron.

VNC proxy
A Compute component that provides
users access to the consoles of their VM
instances through VNC or VMRC.

volume
Disk-based data storage generally repre‐
sented as an iSCSI target with a file system
that supports extended attributes; can be
persistent or ephemeral.

Volume API
An API on a separate endpoint for attach‐
ing, detaching, and creating block storage
for compute VMs.

volume controller
A Block Storage component that oversees
and coordinates storage volume actions.

volume driver
Alternative term for a volume plug-in.

volume ID
Unique ID applied to each storage volume
under the Block Storage control.

volume manager
A Block Storage component that creates,
attaches, and detaches persistent storage
volumes.

volume node
A Block Storage node that runs the
cinder-volume daemon.

volume plug-in
Provides support for new and specialized
types of backend storage for the Block
Storage volume manager.

Volume Service API
Alternative term for the Compute volume
API.

volume worker
A cinder component that interacts with
backend storage to manage the creation
and deletion of volumes and the creation
of compute volumes, provided by the
cinder-volume daemon.

vSphere
An OpenStack-supported hypervisor.

weighing
A Compute process that determines the
suitability of the VM instances for a job
for a particular host. For example, not
enough RAM on the host, too many CPUs
on the host, and so on.

weight
Used by Object Storage devices to deter‐
mine which storage devices are suitable
for the job. Devices are weighted by size.

weighted cost
The sum of each cost used when deciding
where to start a new VM instance in
Compute.

worker
A daemon that listens to a queue and car‐
ries out tasks in response to messages. For
example, the cinder-volume worker man‐
ages volume creation and deletion on
storage arrays.

Xen API
The Xen administrative API, which is
supported by Compute.

Xen Cloud Platform (XCP)
An OpenStack-supported hypervisor.

Xen Cloud Platform (XCP)

Glossary | 287

www.it-ebooks.info

http://www.it-ebooks.info/

Xen Storage Manager Volume Driver
A Block Storage volume plug-in that ena‐
bles communication with the Xen Storage
Manager API.

XenServer
An OpenStack-supported hypervisor.

ZeroMQ
Message queue software supported by
OpenStack. An alternative to RabbitMQ.
Also spelled 0MQ.

Zuul
Tool used in OpenStack development to
ensure correctly ordered testing of
changes in parallel.

Xen Storage Manager Volume Driver

288 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
*-manage command-line tools, 72
/var/lib/nova/instances directory, 126
0mq, 35

A
absolute limit, 257
access control list (ACL), 123, 257
access key, 74, 257
account auditor, 257
account database, 257
account quotas, 89
account reaper, 257
account server, 56, 64, 257
account service, 257
accounting, 257
accounts, 60, 94, 257
ACL (see access control list)
Active Directory, 33, 258
active/active configuration, 258
active/passive configuration, 258
address pool, 112, 258
admin API, 96, 258
admin server, 258
advanced configuration (see configuration op‐

tions)
Advanced Message Queuing Protocol (AMQP),

6, 31, 50, 258
Advanced RISC Machine (ARM), 258
alerts

definition of, 258
intelligent, 167

(see also logging/monitoring)
resource, 165

allocate, definition of, 258
Amazon Kernel Image (AKI), 258
Amazon Machine Image (AMI), 258
Amazon Ramdisk Image (ARI), 258
AMD Virtualization, 39
Anvil, 258
Apache, 37, 258
Apache License 2.0, 258
Apache Web Server, 258
API (application programming interface)

API calls, inspecting, 75
API endpoint, 73, 258
API extension, 259
API extension plug-in, 259
API key, 259
API server, 36, 259
API token, 259
API version, 259
design considerations, 35
public APIs, 279

applet, 259
application server, 259
Application Service Provider (ASP), 259
arptables, 259
associate, definition of, 259
Asynchronous JavaScript and XML (AJAX),

259
ATA over Ethernet (AoE), 259
attach, definition of, 259
attachment (network), 259
auditing, 259
auditor, 259
Austin, 259
auth node, 259

289

www.it-ebooks.info

http://www.it-ebooks.info/

authentication, 32, 37, 73, 259
authentication tokens, 75, 259
AuthN, 260
authorization, 37, 94, 260
authorization node, 260
AuthZ, 260
Auto ACK, 260
auto declare, 260
automated configuration, 28
availability zone, 51, 260
AWS (Amazon Web Services), 260

B
backend interactions

catalog, 260
definition of, 260
store, 59, 260

backup/recovery
considerations, 171
databases, 172
file systems, 172
items included, 171
recovering backups, 173

bandwidth
capping, 102
definition of, 260
design considerations for, 38
hardware specifications and, 49
obtaining maximum performance, 15
private vs. public network recommenda‐

tions, 57
recognizing DDOS attacks, 97

bare, definition of, 260
base image, 102, 114, 260
Bexar, 260
binary

binary objects, 56
binary results in trending, 169
definition of, 260

bits per second (BPS), 260
bits, definition of, 260
block device, 57, 113, 260
block migration, 43, 261
block storage, 5, 57, 107, 113, 246
Block Storage, 90, 173, 261
BMC (Baseboard Management Controller), 261
bootable disk image, 261
Bootstrap Protocol (BOOTP), 261
browsers, definition of, 261

bugs, reporting, 192
builder files, 173, 261
burn-in testing, 54
button classes, 261
bytes, definition of, 261

C
CA (Certificate/Certification Authority), 261
cache pruners, 261
Cactus, 261
CALL, 261
capability

definition of, 261
scaling and, 54

capacity cache, 261
capacity planning, 54
capacity updater, 262
CAST (RPC primitive), 262
catalog, 75, 262
catalog service, 262
ceilometer, 165, 254, 262
cells

cell forwarding, 262
cell managers, 262
child cells, 262
cloud segregation, 51
definition of, 262
parent cells, 278

CentOS, 4, 262
Ceph, 61, 262
CephFS, 262
CERN (European Organization for Nuclear Re‐

search), 224
certificate authority (Compute), 262
Challenge-Handshake Authentication Protocol

(CHAP), 262
chance scheduler, 262
changes since, 262
Chef, 25, 69, 262
child cells, 262
cinder, 72, 246, 262
Cisco neutron plug-in, 262
cloud architect, 263
cloud computing

cloud controller nodes, 263
cloud controllers, 263
cloud overview, 76
definition of, 263
minimizing costs of, 25

290 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

vs. traditional deployments, 63
cloud controller nodes

adding, 49
command-line tools and, 73

cloud controllers
concept of, 31
duties of, 8
enabling RabbitMQ, 161
file system backups and, 172
hardware sizing considerations, 33
log information, 157
network traffic and, 38
new compute nodes and, 130
planned maintenance of, 119
process monitoring and, 163
rebooting, 119
scalability and, 48, 202
services managed by, 31
total failure of, 120

Cloud Data Management Interface (CDMI),
263

Cloud Infrastructure Management Interface
(CIMI), 263

cloud-init, 263
cloudadmin, 263
cloudpipe

cloudpipe image, 263
definition of, 263

CMDB (Configuration Management Database),
263

command filters, 263
Command-line interface (CLI), 1, 134
command-line tools

administrative, 72
compute node diagnostics, 78
getting credentials, 73
inspecting API calls, 75
installing, 72
Python Package Index (PyPI), 71
servers and services, 76

community projects, 263
compression, 263
Compute

Compute API, 263
compute controller, 263
compute host, 263
Compute Service, 86, 264
compute worker, 264
definition of, 263

Icehouse release and, 247
simplest architecture for, 4

compute nodes
adding, 49, 130
backup/recovery of, 172
CPU choice, 39
definition of, 263
diagnosing, 78
failures, 126
file system choice, 44
hypervisor choice, 40
instance storage solutions, 41
live migration, 43
logging, 45
maintenance, 121
networking, 45
overcommitting, 44
troubleshooting, 231

concatenated objects, 264
conductors, 35, 264
config drive, 81, 109, 286
configuration management, 129
configuration options

geographical storage considerations, 200
high availability, 49, 199
IPv6 support, 199
periodic task frequency, 200
periodic task implementation, 198
security, 199
wide availability of, 197

consistency window, 264
console logs, 264
containers

container auditors, 264
container databases, 264
container format, 264
container servers, 64, 264
container service, 264
definition of, 264
quota setting, 89
storage decisions and, 56

controller nodes (see under cloud computing)
cooperative threading, 198
core API, 264
core project, 264
cores, 39
cost, 264
CPUs (central processing units)

choosing, 39

Index | 291

www.it-ebooks.info

http://www.it-ebooks.info/

enabling hyperthreading on, 40
overcommitting, 44

credentials, 37, 73, 264
Crowbar, 265
CSAIL (Computer Science and Artificial Intelli‐

gence Lab), 222
cURL, 75
current workload, 265
customers (see tenants)
customization

custom log statements, 160
dashboard, 189
development environment creation for, 176
Object Storage, 178
OpenStack Compute (nova) Scheduler, 184
paths available, 175

customization module, 265

D
DAC (discretionary access control), 102, 265
daemons

basics of, 1
definition of, 265
running on CLI, 134

DAIR, 223, 229
dashboard, 5, 33, 37, 71, 189, 253, 265
data

data encryption, 265
inspecting/recovering failed instances, 123
preventing loss of, 171

databases
backup/recovery of, 172
database ID, 265
database replicators, 265
design considerations, 34
Icehouse release and, 250
Image Service, 101
instance information in, 116
maintenance/debugging, 131
nova-network troubleshooting, 148

deallocate, definition of, 265
Debian, 265
debugging (see logging/monitoring; mainte‐

nance/debugging)
deduplication, 265
default panels, 265
default tenants, 265
default tokens, 265
delayed delete, 265

delivery mode, 265
deployment (see provisioning/deployment)
deprecated auth, 265
design considerations

API support, 35
authentication/authorization, 37
cloud controller services, 31
conductor services, 35
dashboard, 37
database choice, 34
extensions, 36
hardware considerations, 32
images, 37
message queues, 34
network design, 63
networks, 38
scheduling, 36
separation of services, 33

developer, 266
development environments, creating, 176
device ID, 266
device weight, 266
DevStack

customizing dashboard, 189
customizing Object Storage (swift), 178
customizing OpenStack Compute (nova)

scheduler, 184
definition of, 266
development environment creation, 176

DHCP (Dynamic Host Configuration Protocol)
basics of, 266
debugging, 149, 227

DHTML (Dynamic HyperText Markup Lan‐
guage), 267

Diablo, 266
direct consumers, 266
direct exchanges, 266
direct publishers, 266
disassociate, 266
disk encryption, 266
disk format, 266
disk partitioning, 26
dispersion, 266
Django, 189, 266
DNS (Domain Name Server, Service or System)

debugging, 152
definitions of, 266
DNS aliases, 36
DNS records, 266

292 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

DNS service choices, 68
dnsmasq, 266
Docker, 40
domain, definition of, 267
download, definition of, 267
drivers

differences between, 197
RPC drivers, 281

DRTM (dynamic root of trust measurement),
267

durable exchange, 267
durable queue, 267

E
EBS boot volume, 267
ebtables, 267, 268
EC2

EC2 access key, 267
EC2 API, 267
EC2 compatibility API, 267
EC2 secret key, 267

Elastic Block Storage (EBS), 267
encryption, definition of, 267
endpoints

API endpoint, 50, 73, 258
endpoint registry, 268
endpoint templates, 268
global endpoint template, 270
tenant endpoint, 285

entity, definition of, 268
ephemeral images, 268
ephemeral volume, 268
Essex, 268
ESX hypervisor, 40, 268
ESXi hypervisor, 40, 268
ETag, 268
euca2ools, 268
Eucalyptus Kernel Image (EKI), 268
Eucalyptus Machine Image (EMI), 268
Eucalyptus Ramdisk Image (ERI), 268
evacuation, definition of, 268
example architectures (see legacy networking;

OpenStack networking)
exchange, 268
exchange types, 268
exclusive queues, 268
extended attributes (xattrs), 268
extensions

definition of, 269

design considerations, 36
extra specs, definition of, 269

F
FakeLDAP, 269
fan-out exchange, 269
Fedora, 269
Fibre Channel, 269
Fibre Channel over Ethernet (FCoE), 269
file injection, 111
file systems

backup/recovery of, 172
choice of, 44
nonshared, 43
shared, 42

fill-first scheduler, 269
filtering

definition of, 269
ingress filtering, 272

Firewall-as-a-Service (FWaaS), 269
firewalls, 269
fixed IP addresses, 64, 269
Flat Manager, 269
flat mode injection, 269
flat network, 269
FlatDHCP Manager, 269
flavor, 47, 102, 269
flavor ID, 269
floating IP address, 5, 148, 269
Folsom, 270
FormPost, 270
frontend, definition of, 270
Fully Automatic Installation (FAI), 27
functional testing, 183

G
gateway, 270
glance

glance API server, 37, 270
glance registry, 37, 270
python-glanceclient, 72

global endpoint template, 270
GlusterFS, 61, 270
golden image, 270
Graphic Interchange Format (GIF), 270
Graphics Processing Unit (GPU), 270
Green Threads, 270
Grizzly, 4, 270
guest OS, 270

Index | 293

www.it-ebooks.info

http://www.it-ebooks.info/

H
Hadoop, 270
handover, 270
hard drives, replacing, 127
hard reboot, 270
hardware

design considerations, 32
maintenance/debugging, 130
scalability planning, 53
virtual hardware, 47

Havana, 4, 270
heat, 254, 271
help, resources for, 191
high availability, 49, 199
horizon plug-ins, 271
host aggregate, 52, 271
Host Bus Adapter (HBA), 271
hosts, definition of, 271
HTTP (Hypertext Transfer Protocol)

basics of, 271
HTTPS (Hypertext Transfer Protocol Secure),

271
Hyper-V, 40, 271
hyperlink, 271
hyperthreading, 39
hypervisors

choosing, 40
compute node diagnosis and, 78
definition of, 271
differences between, 197
hypervisor pools, 271
KVM, 6
running multiple, 41

I
IaaS (Infrastructure-as-a-Service)

basics of, 271
Icehouse

block storage (cinder), 246
common (oslo), 246
Compute (nova), 247
Compute bare-metal deployment, 242
Compute V3 API, 242
database-as-a-service tool, 242, 250
definition of, 271
features overview, 245
Identity (keystone), 250
image quotas, 86
Image Service (glance), 252

IPv6 support, 199
migration to Ubuntu, 221
Networking (neutron), 252
nova network deprecation, 241
Object Storage (swift), 253
OpenStack dashboard (horizon), 253
Orchestration (heat), 254
scheduler improvements, 242
Telemetry (ceilometer), 254
upcoming release of, 237
upgrades in, 240

ID number, 271
Identity Service

authentication decisions, 38
backup/recovery, 173
basics of, 272
displaying services and endpoints with, 77
Icehouse release and, 250
Identity backend, 272
Identity Service API, 83, 272
image ID, 272
plug-in support, 38

IDS (Intrusion Detection System), 272
Image Service

backup/recovery of, 173
database queries, 101
database tables, 101
design considerations, 37
Icehouse release and, 252
image cache, 272
image membership, 272
image owner, 272
image registry, 272
Image Service API, 272
image status, 272
image store, 272
image UUID, 272
public images, 279
quota setting, 86

images
adding, 99
CLI options for, 101
definition of, 272
deleting, 100
sharing between projects, 100

incubated projects, 272
ingress filtering, 272
injection, 272
instances

294 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

boot failures, 109
database information, 116
definition of, 272
instance ID, 273
instance state, 273
instance type, 273
instance type ID, 273
instance UUID, 273
instance-specific data, 110
list of running, 81
maintenance/debugging, 122
starting, 108
storage solutions, 41
tracing instance requests, 159

Intel Virtualization Technology, 39
intelligent alerting, 167
interface ID, 273
interface states, checking, 137
Internet Service Provider (ISP), 273
ip a command, 137
IP Address Management (IPAM), 273
IP addresses

address planning, 64
definition of, 273
fixed, 64, 269
floating, 5, 112, 148, 269
private, 278
public, 279
public addressing options, 64
sections of, 64
shared, 283
static, 64, 284

ip6tables, 273
IPL (Initial Program Loader), 273
IPMI (Intelligent Platform Management Inter‐

face), 273
iptables, 147, 273
IPv6, enabling support for, 199
ironic, 273
iSCSI protocol, 273
ISO9960 format, 273
itsec, 273

J
Java, 273
JavaScript, 273
JavaScript Object Notation (JSON), 274
Jenkins, 274
Juno, 274

K
kernel-based VM (KVM) hypervisor, 6, 40, 274
Keyring Support, 75
keystone, 72, 274
Kickstart, 274

L
large object, 274
Launchpad, 274
Layer-2 network, 274
legacy networking (nova)

benefits of multi-host networking, 7
component overview, 4
detailed description, 7
features supported by, 5
optional extensions, 9
rationale for choice of, 5
vs. OpenStack Network Service (neutron), 7

libvirt, 274
Linux Bridge

neutron plug-in for, 274
troubleshooting, 137

Linux containers (LXC), 40, 274
live migration, 5, 43, 58, 274
live snapshots, 115
load balancing, 274
Load-Balancing-as-a-Service (LBaaS), 274
logging/monitoring

adding custom log statements, 160
ceilometer project, 165
central log management, 161
compute nodes and, 45
intelligent alerting, 167
log location, 157
logging levels, 158
OpenStack-specific resources, 166
process monitoring, 164
RabbitMQ web management interface, 161
reading log messages, 158
resource alerting, 165
StackTack tool, 163
tailing logs, 133
tracing instance requests, 159
trending, 168
troubleshooting, 232

LVM (Logical Volume Manager), 61

Index | 295

www.it-ebooks.info

http://www.it-ebooks.info/

M
mailing lists, 191
maintenance/debugging, 119-135

(see also troubleshooting)
/var/lib/nova/instances, 126
cloud controller planned maintenance, 119
cloud controller total failure, 120
complete failures, 128
compute node planned maintenance, 121
compute node reboot, 121
compute node total failures, 126
configuration management, 129
databases, 131
determining component affected, 133
hardware, 130
instances, 122
rebooting following, 119
reporting bugs, 192
schedule of tasks, 132
storage node reboot, 127
storage node shut down, 127
swift disk replacement, 127
uninstalling, 135
volumes, 125

management API (see admin API)
management network, 63, 274
manager, 274
manifests

definition of, 274
manifest objects, 274

marconi, 274
melange, 274
membership, 275
membership lists, 275
memcached, 275
memory overcommit, 275
message brokers, 275
message bus, 275
message queue, 35, 275
messages

design considerations, 34
non-durable exchanges, 276
non-durable queues, 276
persistent messages, 278
transient messages, 285

Meta-Data Server (MDS), 275
metadata

instance metadata, 110
OpenStack Image Service and, 37

metering/telemetry, 165
migration, 5, 43, 58, 275
MIT CSAIL (Computer Science and Artificial

Intelligence Lab), 222
Modular Layer 2 (ML2) neutron plug-in, 275
modules, types of, 1
Monitor (LBaaS), 275
Monitor (Mon), 275
monitoring

intelligent alerting, 167
metering and telemetry, 165
OpenStack-specific resources, 166
process monitoring, 164
resource alerting, 165
trending, 168

(see also logging/monitoring)
MTU (maximum transmission unit), 226
multi-factor authentication, 275
multi-host networking, 7, 35, 68
MultiNic, 67, 275
multithreading, 39

N
Nagios, 164
namespaces, troubleshooting, 154
Nebula, 275
NeCTAR Research Cloud, 221
netadmin, 275
NetApp volume driver, 275
network design

first steps, 63
IP address planning, 64
management network, 63
network topology

deployment options, 66
multi- vs. single-host networking, 68
multi-NIC provisioning, 67
VLAN with OpenStack VMs, 67

public addressing options, 64
services for networking, 68

network namespaces, troubleshooting, 154
network troubleshooting (see troubleshooting)
Networking API, 276
networks

configuration management, 129
configuration of, 28
definition of, 275
deployment options, 66
design considerations, 38

296 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

inspection of, 79
multi-host, 7, 68
Network Address Translation (NAT), 275
network controllers, 275
Network File System (NFS), 276
network IDs, 276
network managers, 66, 276
network nodes, 276
network segments, 276
Network Time Protocol (NTP), 68, 276
network UUID, 276
network workers, 276
private networks, 278
public, 279
virtual, 286
VLAN, 67, 225, 286

neutron
Icehouse release and, 252
Networking API, 276
neutron manager, 276
neutron plug-in, 276
python-neutronclient, 72

Nexenta volume driver, 276
NICs (network interface cards), 63
No ACK, 276
nodes

adding, 130
definition of, 276
proxy nodes, 279
storage nodes, 127, 284
swift storage nodes, 284

non-durable exchanges, 276
non-durable queue, 276
non-persistent volume (see ephemeral volume)
nova

Compute API, 276
deprecation of, 240
Icehouse release and, 247
nova-network, 277
python-novaclient, 72

O
Object Storage

adding nodes, 130
backup/recovery of, 173
customization of, 178
geographical considerations, 200
Icehouse release and, 253
Object Storage API, 55, 277

Object Storage Device (OSD), 277
quota setting, 89
simplest architecture for, 4

objects
concatenated objects, 264
definition of, 277
manifest objects, 274
object auditors, 277
object expiration, 277
object hash, 277
object path hash, 277
object replicators, 277
object servers, 64, 277
object storage, 5
object versioning, 277
persistent storage of, 55
segmented objects, 282
storage decisions and, 56

Oldie, 277
Open Cloud Computing Interface (OCCI), 277
Open Virtualization Format (OVF), 277
Open vSwitch

neutron plug-in for, 277
troubleshooting, 153

OpenLDAP, 277
OpenStack

basics of, 277
documentation, 191
module types in, 1

OpenStack community
additional information, 196
contributing to, 195
customization and, 175
getting help from, 191
joining, 195
reporting bugs, 192
security information, 195
use cases

CERN, 224
DAIR, 223
MIT CSAIL, 222
NeCTAR, 221

working with roadmaps
aspects to watch, 240-243
influencing, 239
information available, 238
release cycle, 237

OpenStack Networking (neutron)
component overview, 9

Index | 297

www.it-ebooks.info

http://www.it-ebooks.info/

detailed description of, 11
Icehouse release and, 252
rationale for choice of, 10
third-party component configuration, 19
troubleshooting, 137

openSUSE, 277
operator, 277
Orchestration, 254, 277
orphans, 278
overcommitting, 44

P
parent cells, 278
partitions

definition of, 278
disk partitioning, 26
partition index, 278
partition index value, 278

passwords, 74
Paste framework, 178
path failures, 146
pause, 278
PCI passthrough, 278
periodic tasks, 198
persistent messages, 278
persistent storage, 55
persistent volume, 278
personality file, 278
ping packets, 138
pip utility, 71
Platform-as-a-Service (PaaS), 278
plug-ins, definition of, 278
policy service, 278
ports

definition of, 278
port UUID, 278
virtual, 286

preseed, definition of, 278
private image, 278
private IP address, 278
private networks, 278
process monitoring, 164
Project Members tab, 93
projects

definition of, 83, 279
obtaining list of current, 80
project ID, 279
project VPN, 279
sharing images between, 100

provider, 279
provisioning/deployment

automated configuration, 28
automated deployment, 25
deployment scenarios, 33
network deployment options, 66
remote management, 29
tips for, 29

proxy nodes, 279
proxy servers, 279
public API, 279
public image, 279
public IP address, 279
public network, 279
Puppet, 25, 69, 279
Python, 178, 189, 279
Python Package Index (PyPI), 71

Q
QEMU Copy On Write 2 (QCOW2), 279
Qpid, 35, 279
quarantine, 279
queues

exclusive queues, 268
transient queues, 285

Quick EMUlator (QEMU), 40, 279
quotas, 85-91, 279

R
RabbitMQ, 35, 161, 279
Rackspace Cloud Files, 279
RADOS Block Device (RBD), 279
radvd, 279
RAID (redundant array of independent disks),

26
RAM filter, 280
RAM overcommit, 44, 280
rate limits, 280
raw format, 280
RDO (Red Hat Distributed OpenStack), 4, 9
rebalancing, 280
reboot

cloud controller or storage proxy, 119
compute node, 121
hard vs. soft, 280, 283

rebuilding, 280
Recon, 280
records

basics of, 280

298 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

record IDs, 280
recovery, 173

(see also backup/recovery)
Red Hat Enterprise Linux (RHEL), 280
reference architecture, 280
region, 51, 280
registry (see under Image Service)
registry servers, 280
Reliable, Autonomic Distributed Object Store

(RADOS), 280
Remote Procedure Call (RPC), 280
replication

definition of, 280
replica count, 281
replicators, 281

request IDs, 281
rescue images, 281
resizing, 281
resources

generic vs. OpenStack-specific, 166
resource alerting, 165

RESTful web services, 281
rings

definition of, 281
ring builders, 173, 281

Role Based Access Control (RBAC), 281
roles

definition of, 281
role ID, 281

rollbacks
preparing for, 202
process for, 216

rootwrap, 281
round-robin scheduler, 281
routing keys, 281
RPC drivers, 281
rsync, 281
rsyslog, 161
RXTX cap/quota, 281
Ryu neutron plug-in, 282

S
S3 storage service, 282
sahara, 282
scaling

adding cloud controller nodes, 49
availability zones, 51
burn-in testing, 54
capacity planning, 54

cells and regions, 51
cloud segregation, 50
file system choice, 43
hardware procurement, 53
host aggregate, 52
metrics for, 47
Object Storage and, 56
vertical vs. horizontal, 47

scheduler manager, 282
schedulers

customization of, 184
design considerations, 36
round-robin, 281
spread-first, 283

scoped tokens, 282
script modules, 1
scrubbers, 282
secret keys, 282
secure shell (SSH), 282
security groups, 104, 112, 282
security issues

configuration options, 199
failed instance data inspection, 123
middleware example, 178
passwords, 74
reporting/fixing vulnerabilities, 195
scheduler example, 184

segmented objects, 282
segregation methods, 50
separation of services, 33
server image, 282
servers

application servers, 259
avoiding volatility in, 53
definition of, 282
obtaining overview of, 76
proxy servers, 279
registry servers, 280
server UUID, 282
virtual, 286

service catalog, 282
service ID, 282
service registration, 282
service restoration, 128
service tenant, 282
service token, 282
services

definition of, 282
obtaining overview of, 76

Index | 299

www.it-ebooks.info

http://www.it-ebooks.info/

separation of, 33
sessions

session backend, 283
session persistence, 283
session storage, 283

shared IP address, 283
shared IP groups, 283
shared storage, 42, 283
Sheepdog, 283
Simple Cloud Identity Management (SCIM),

283
single-host networking, 68
Single-root I/O Virtualization (SR-IOV), 283
SmokeStack, 283
snapshot, 114, 283
soft reboot, 283
SolidFire Volume Driver, 283
SPICE (Simple Protocol for Independent Com‐

puting Environments), 283
spread-first scheduler, 283
SQL-Alchemy, 283
SQLite, 284
Stackforge, 29
StackTach, 163, 284
static IP addresses, 64, 284
StaticWeb, 284
storage

block storage, 5, 57, 107, 113, 173, 246
choosing backends, 59
commodity storage, 60
ephemeral, 55
file system choice, 44
file-level, 58
geographical considerations, 200
instance storage solutions, 41
live migration, 43
object storage, 5, 55
overview of concepts, 57
storage driver support, 60
storage manager, 284
storage manager backend, 284
storage proxy maintenance, 119
storage services, 284
storage workers, 32
swift storage nodes, 284

storage backend, 59, 284
storage node, 127, 284
strategy, 284
subdomains, 284

SUSE Linux Enterprise Server (SLES), 284
suspend, definition of, 284
swap, definition of, 284
swawth, 284
swift

Icehouse release and, 253
Object Storage API, 55, 277
python-swiftclient, 72
swift middleware, 178, 284
swift proxy server, 284
swift storage nodes, 284

swift All in One (SAIO), 284
sync point, 284
sysadmin, 285
system usage, 285
systems administration (see user management)

T
tailing logs, 133
tcpdump, 146
Telemetry, 254, 285
telemetry/metering, 165
TempAuth, 285
Tempest, 285
TempURL, 285
tenant

definition of, 83
Tenant API, 285
tenant endpoint, 285
tenant ID, 285

testing
burn-in testing, 54
functional testing, 183

token services, 285
tokens, 285
tombstone, 285
topic publisher, 285
Torpedo, 285
transaction IDs, 285
transient exchanges (see non-durable exchang‐

es)
transient messages, 285
transient queues, 285
trending

monitoring cloud performance with, 168
report examples, 169
vs. alerts, 169

troubleshooting
burn-in testing, 54

300 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

checking interface states, 137
compute nodes, 231
DAIR, 229
detecting path failures, 146
DHCP, 227
DNS issues, 36, 152
getting help, 191
iptables, 147
logging, 232
network namespaces, 154
nova-network database, 148
nova-network DHCP, 149
nova-network traffic, 138
Open vSwitch, 153
OpenStack traffic, 139-145
upgrades, 233
VLAN, 225

trove, 285

U
Ubuntu, 4, 285
uninstall operation, 135
unscoped token, 285
updaters, 286
upgrading

controlling cost of, 201
final steps, 216
Grizzly to Havana (Red Hat), 210-215
Grizzly to Havana (Ubuntu), 204-210
pre-upgrade testing, 201
preparation for, 202
process overview, 202
rolling back failures, 216
troubleshooting, 233

use cases
CERN, 224
DAIR, 223
MIT CSAIL, 222
NeCTAR, 221

user data, 111, 286
user management

adding projects, 84
associating users with projects, 93
creating new users, 92
handling disruptive users, 97
listing users, 80
quotas, 85
terminology for, 83

User Mode Linux (UML), 286

user training
block storage, 107, 113
flavors, 102
floating IPs, 112
images, 99
instances, 108, 116
security groups, 104, 112
snapshots, 114

users, definition of, 286

V
VIF UUID, 286
Virtual Central Processing Unit (vCPU), 286
Virtual Disk Image (VDI), 286
Virtual Hard Disk (VHD), 286
virtual IP, 286
virtual machine (VM), 47, 286
virtual network, 286
Virtual Network Computing (VNC), 286
Virtual Network InterFace (VIF), 286
virtual port, 286
virtual private network (VPN), 286
virtual servers, 286
virtual switch (vSwitch), 286
virtual VLAN, 286
VirtualBox, 286
virtualization technology, 39
VLAN manager, 286
VLAN network, 67, 225, 286
VM disk (VMDK), 287
VM image, 287
VM Remote Control (VMRC), 287
VMware API, 40, 287
VNC proxy, 287
volume

maintenance/debugging, 125
Volume API, 287
volume controller, 287
volume driver, 287
volume ID, 287
volume manager, 287
volume node, 287
volume plug-in, 287

Volume Service API, 287
volume storage, 57
volume workers, 287
vSphere, 287
vulnerability tracking/management, 195

Index | 301

www.it-ebooks.info

http://www.it-ebooks.info/

W
weighing, 287
weight, 54, 287
weighted cost, 287
workers, 32, 287
working environment

command-line tools, 71
dashboard, 71
network inspection, 79
running instances, 81
users and projects, 80

X
Xen API

Xen Cloud Platform (XCP), 287
Xen Storage Manager Volume Driver, 288
XenServer hypervisor, 40, 288

Z
ZeroMQ, 288
ZFS, 62
Zuul, 288

302 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon
The animal on the cover of OpenStack Operations Guide is a crested agouti (Dasyproc‐
ta cristata), a rodent found in the South American countries of Guyana and Suri‐
name. Cristata is derived from the Portuguese word crista, meaning “crest.” Presuma‐
bly, this refers to a thick collar of fur around the animal’s neck. However, its classifica‐
tion is in question—in 1978, scientist A.M. Husson theorized that the crested agouti
was the same species as the red-rumped agouti (Dasyprocta leporina), which occupies
the same geographic range. Because the matter has not been definitively resolved, it is
difficult to determine the abundance and range of the species, so it is officially catego‐
rized as Data Deficient by the IUCN.

Agoutis are related to guinea pigs, though the agouti is generally larger and has
longer legs. They also have very short hairless tails and coarse fur. Their diet consists
of fruit, nuts, roots, and leaves, which they eat by sitting on their hind legs and hold‐
ing the food in their front paws. Agoutis are among the few species (including
macaws) that can open Brazil nuts without tools. Using their sharp teeth, they gnaw
through the hard outer capsule to reach the nuts inside.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to http://animals.oreilly.com.

The cover image is from Beeton’s Dictionary of Natural History. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://animals.oreilly.com
http://www.it-ebooks.info/

	Table of Contents
	Preface
	Introduction to OpenStack
	Getting Started with OpenStack
	Using OpenStack
	Plug and Play OpenStack
	Roll Your Own OpenStack

	Who This Book Is For
	Further Reading

	How This Book Is Organized
	Why and How We Wrote This Book
	How to Contribute to This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Architecture
	Chapter 1. Example Architectures
	Example Architecture—Legacy Networking (nova)
	Overview
	Detailed Description
	Optional Extensions

	Example Architecture—OpenStack Networking
	Overview
	Detailed Description
	Example Component Configuration

	Parting Thoughts on Architectures

	Chapter 2. Provisioning and Deployment
	Automated Deployment
	Disk Partitioning and RAID
	Network Configuration

	Automated Configuration
	Remote Management
	Parting Thoughts for Provisioning and Deploying OpenStack
	Conclusion

	Chapter 3. Designing for Cloud Controllers and Cloud Management
	Hardware Considerations
	Separation of Services
	Database
	Message Queue
	Conductor Services
	Application Programming Interface (API)
	Extensions
	Scheduling
	Images
	Dashboard
	Authentication and Authorization
	Network Considerations

	Chapter 4. Compute Nodes
	Choosing a CPU
	Choosing a Hypervisor
	Instance Storage Solutions
	Off Compute Node Storage—Shared File System
	On Compute Node Storage—Shared File System
	On Compute Node Storage—Nonshared File System
	Issues with Live Migration
	Choice of File System

	Overcommitting
	Logging
	Networking
	Conclusion

	Chapter 5. Scaling
	The Starting Point
	Adding Cloud Controller Nodes
	Segregating Your Cloud
	Cells and Regions
	Availability Zones and Host Aggregates

	Scalable Hardware
	Hardware Procurement
	Capacity Planning
	Burn-in Testing

	Chapter 6. Storage Decisions
	Ephemeral Storage
	Persistent Storage
	Object Storage
	Block Storage

	OpenStack Storage Concepts
	Choosing Storage Backends
	Commodity Storage Backend Technologies

	Conclusion

	Chapter 7. Network Design
	Management Network
	Public Addressing Options
	IP Address Planning
	Network Topology
	VLAN Configuration Within OpenStack VMs
	Multi-NIC Provisioning
	Multi-Host and Single-Host Networking

	Services for Networking
	NTP
	DNS

	Conclusion

	Part II. Operations
	Chapter 8. Lay of the Land
	Using the OpenStack Dashboard for Administration
	Command-Line Tools
	Installing the Tools
	Administrative Command-Line Tools
	Getting Credentials
	Inspecting API Calls
	Servers and Services
	Diagnose Your Compute Nodes

	Network Inspection
	Users and Projects
	Running Instances
	Summary

	Chapter 9. Managing Projects and Users
	Projects or Tenants?
	Managing Projects
	Adding Projects

	Quotas
	Set Image Quotas
	Set Compute Service Quotas
	Set Object Storage Quotas
	Set Block Storage Quotas

	User Management
	Creating New Users
	Associating Users with Projects
	Customizing Authorization
	Users Who Disrupt Other Users

	Summary

	Chapter 10. User-Facing Operations
	Images
	Adding Images
	Sharing Images Between Projects
	Deleting Images
	Other CLI Options
	The Image Service and the Database
	Example Image Service Database Queries

	Flavors
	Private Flavors
	How Do I Modify an Existing Flavor?

	Security Groups
	General Security Groups Configuration
	End-User Configuration of Security Groups

	Block Storage
	Block Storage Creation Failures

	Instances
	Starting Instances
	Instance Boot Failures
	Using Instance-Specific Data

	Associating Security Groups
	Floating IPs
	Attaching Block Storage
	Taking Snapshots
	Live Snapshots

	Instances in the Database
	Good Luck!

	Chapter 11. Maintenance, Failures, and Debugging
	Cloud Controller and Storage Proxy Failures and Maintenance
	Planned Maintenance
	Rebooting a Cloud Controller or Storage Proxy
	After a Cloud Controller or Storage Proxy Reboots
	Total Cloud Controller Failure

	Compute Node Failures and Maintenance
	Planned Maintenance
	After a Compute Node Reboots
	Instances
	Inspecting and Recovering Data from Failed Instances
	Volumes
	Total Compute Node Failure
	/var/lib/nova/instances

	Storage Node Failures and Maintenance
	Rebooting a Storage Node
	Shutting Down a Storage Node
	Replacing a Swift Disk

	Handling a Complete Failure
	Configuration Management
	Working with Hardware
	Adding a Compute Node
	Adding an Object Storage Node
	Replacing Components

	Databases
	Database Connectivity
	Performance and Optimizing

	HDWMY
	Hourly
	Daily
	Weekly
	Monthly
	Quarterly
	Semiannually

	Determining Which Component Is Broken
	Tailing Logs
	Running Daemons on the CLI

	Uninstalling

	Chapter 12. Network Troubleshooting
	Using “ip a” to Check Interface States
	Visualizing nova-network Traffic in the Cloud
	Visualizing OpenStack Networking Service Traffic in the
 Cloud
	Finding a Failure in the Path
	tcpdump
	iptables
	Network Configuration in the Database for nova-network
	Manually Deassociating a Floating IP

	Debugging DHCP Issues with nova-network
	Debugging DNS Issues
	Troubleshooting Open vSwitch
	Dealing with Network Namespaces
	Summary

	Chapter 13. Logging and Monitoring
	Where Are the Logs?
	Reading the Logs
	Tracing Instance Requests
	Adding Custom Logging Statements
	RabbitMQ Web Management Interface or rabbitmqctl
	Centrally Managing Logs
	rsyslog Client Configuration
	rsyslog Server Configuration

	StackTach
	Monitoring
	Process Monitoring
	Resource Alerting
	Metering and Telemetry with Ceilometer
	OpenStack-Specific Resources
	Intelligent Alerting
	Trending

	Summary

	Chapter 14. Backup and Recovery
	What to Back Up
	Database Backups
	File System Backups
	Compute
	Image Catalog and Delivery
	Identity
	Block Storage
	Object Storage

	Recovering Backups
	Summary

	Chapter 15. Customization
	Create an OpenStack Development Environment
	Customizing Object Storage (Swift) Middleware
	Customizing the OpenStack Compute (nova) Scheduler
	Customizing the Dashboard (Horizon)
	Conclusion

	Chapter 16. Upstream OpenStack
	Getting Help
	Reporting Bugs
	Confirming and Prioritizing
	Bug Fixing
	After the Change Is Accepted

	Join the OpenStack Community
	How to Contribute to the Documentation
	Security Information
	Finding Additional Information

	Chapter 17. Advanced Configuration
	Differences Between Various Drivers
	Implementing Periodic Tasks
	Specific Configuration Topics
	Security Configuration for Compute, Networking, and
 Storage
	High Availability
	Enabling IPv6 Support
	Periodic Task Frequency for Compute
	Geographical Considerations for Object Storage

	Chapter 18. Upgrades
	Pre-Upgrade Testing Environment
	Preparing for a Rollback
	Upgrades
	How to Perform an Upgrade from Grizzly to Havana—Ubuntu
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Update Configuration Files
	Upgrade Packages on the Controller Node
	Stop Services, Update Database Schemas, and Restart Services on
 the Controller Node
	Upgrade Packages and Restart Services on the Compute
 Nodes
	Upgrade Packages and Restart Services on the Block Storage
 Nodes

	How to Perform an Upgrade from Grizzly to Havana—Red Hat Enterprise
 Linux and Derivatives
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Update Configuration Files
	Upgrade Packages on the Controller Node
	Stop Services, Update Database Schemas, and Restart Services on
 the Controller Node
	Upgrade Packages and Restart Services on the Compute
 Nodes
	Upgrade Packages and Restart Services on the Block Storage
 Nodes

	Cleaning Up and Final Configuration File Updates
	Rolling Back a Failed Upgrade

	Appendix A. Use Cases
	NeCTAR
	Deployment
	Resources

	MIT CSAIL
	Deployment
	Resources

	DAIR
	Deployment
	Resources

	CERN
	Deployment
	Resources

	Appendix B. Tales From the Cryp^H^H^H^H Cloud
	Double VLAN
	The Issue
	Disappearing Images
	The Valentine’s Day Compute Node Massacre
	Down the Rabbit Hole
	Havana Haunted by the Dead

	Appendix C. Working with Roadmaps
	Information Available to You
	Influencing the Roadmap
	Aspects to Watch
	Driver Quality Improvements
	Easier Upgrades
	Deprecation of Nova Network

	Replacement of Open vSwitch Plug-in with Modular Layer 2
	Compute V3 API
	OpenStack on OpenStack (TripleO)
	Data Processing (Sahara)
	Bare-Metal Deployment (Ironic)
	Database as a Service (Trove)
	Messaging as a Service (Marconi)
	Scheduler Improvements
	Block Storage Improvements
	Toward a Python SDK

	Appendix D. Icehouse Preview
	Block Storage (cinder)
	Common (oslo)
	Compute (nova)
	Database Service (trove)
	Identity (keystone)
	Image Service (glance)
	Networking (neutron)
	Object Storage (swift)
	OpenStack dashboard (horizon)
	Orchestration (heat)
	Telemetry (ceilometer)

	Appendix E. Resources
	OpenStack
	Cloud (General)
	Python
	Networking
	Systems Administration
	Virtualization
	Configuration Management

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

